Geometric neural operators (gnps) for data-driven deep learning in non-euclidean settings

被引:0
|
作者
Quackenbush, B. [1 ]
Atzberger, P. J. [1 ,2 ]
机构
[1] Univ Calif Santa Barbara UCSB, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara UCSB, Dept Math, Dept Mech Engn, Santa Barbara, CA 93106 USA
来源
基金
美国国家科学基金会;
关键词
neural operator; deep learning; geometric methods; partial differential equations; inverse problems; data-driven methods; UNIVERSAL APPROXIMATION; NONLINEAR OPERATORS;
D O I
10.1088/2632-2153/ad8980
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce Geometric Neural Operators (GNPs) for data-driven deep learning of geometric features for tasks in non-euclidean settings. We present a formulation for accounting for geometric contributions along with practical neural network architectures and factorizations for training. We then demonstrate how GNPs can be used (i) to estimate geometric properties, such as the metric and curvatures of surfaces, (ii) to approximate solutions of geometric partial differential equations on manifolds, and (iii) to solve Bayesian inverse problems for identifying manifold shapes. These results show a few ways GNPs can be used for incorporating the roles of geometry in the data-driven learning of operators.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Riemannian geometric framework for manifold learning of non-Euclidean data
    Jang, Cheongjae
    Noh, Yung-Kyun
    Park, Frank Chongwoo
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 673 - 699
  • [2] A Riemannian geometric framework for manifold learning of non-Euclidean data
    Cheongjae Jang
    Yung-Kyun Noh
    Frank Chongwoo Park
    Advances in Data Analysis and Classification, 2021, 15 : 673 - 699
  • [3] Unsupervised learning with normalised data and non-Euclidean norms
    Doherty, K. A. J.
    Adams, R. G.
    Davey, N.
    APPLIED SOFT COMPUTING, 2007, 7 (01) : 203 - 210
  • [4] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42
  • [5] Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
    Jensen, Kristopher T.
    Kao, Ta-Chu
    Tripodi, Marco
    Hennequin, Guillaume
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [6] MULTISCALE GEOMETRIC FEATURE EXTRACTION FOR HIGH-DIMENSIONAL AND NON-EUCLIDEAN DATA WITH APPLICATIONS
    Chandler, Gabriel
    Polonik, Wolfgang
    ANNALS OF STATISTICS, 2021, 49 (02): : 988 - 1010
  • [7] Deep Wavelet Neural Process: Modeling Stochastic Variation of Non-Euclidean Functional Data for Manufacturing Quality Inference
    Wang, Yu
    Wang, Shilong
    Yang, Bo
    Zhou, Lin
    Shi, Zengchao
    Yi, Lili
    Kang, Ling
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 5125 - 5136
  • [8] Integrating Euclidean and non-Euclidean spatial information for deep learning-based spatiotemporal hydrological simulation
    Deng, Liangkun
    Zhang, Xiang
    Slater, Louise J.
    Liu, Haoyuan
    Tao, Shiyong
    JOURNAL OF HYDROLOGY, 2024, 638
  • [9] DATA-DRIVEN LEARNING OF GEOMETRIC SCATTERING MODULES FOR GNNS
    Tong, Alexander
    Wenkel, Frederick
    Macdonald, Kincaid
    Krishnaswamy, Smita
    Wolf, Guy
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [10] On Non-Linear operators for Geometric Deep Learning
    Sergeant-Perthuis, Gregoire
    Maier, Jakob
    Bruna, Joan
    Oyallon, Edouard
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,