Enhancing the security in IoT and IIoT networks: An intrusion detection scheme leveraging deep transfer learning

被引:1
|
作者
Ahmad, Basharat [1 ,2 ]
Wu, Zhaoliang [1 ,2 ]
Huang, Yongfeng [1 ,2 ]
Rehman, Sadaqat Ur [3 ]
机构
[1] Tsinghua Univ, Tsinghua Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[3] Univ Salford, Sch Sci Engn & Environm, Manchester M5 4WT, England
关键词
Internet of things (ioT); Industrial internet of things (IIoT); Intrusion detection system (IDS); Deep transfer learning (DTL); Cybersecurity; Lightweight IDS; INTERNET; THINGS;
D O I
10.1016/j.knosys.2024.112614
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Internet of Things (IoT) networks, which are defined by their interconnected devices and data streams are an expanding attack surface for cyber adversaries. Industrial Internet of Things (IIoT) is a subset of IoT and has significant importance in-terms of security. Robust intrusion detection systems (IDS) are essential for protecting these critical infrastructures. Our research suggests a novel approach to the detection of anomalies in IoT and IIoT networks that leverages the capabilities of deep transfer learning. Our methodology begins with the EdgeIIoT dataset, which serves as the basis for our data analysis. We convert the data into an appropriate image format to enable Convolutional Neural Network (CNN)-based processing. The hyper-parameters of individual machine learning models are subsequently optimized using a Random Search algorithm. This optimization phase optimizes the performance of each model by modifying the hyper-parameters that are unique to the learning algorithms. The performance of each model is meticulously assessed subsequent to hyper-parameter optimization. The top-performing models are subsequently, strategically selected and combined using the ensemble technique. The IDS scheme's overall detection accuracy and generalizability are improved by the integration of strengths from multiple models. The proposed scheme demonstrates significant effectiveness in identifying abroad spectrum of attacks, encompassing a total of 14 distinct attack types. This comprehensive detection capability contributes to amore secure and resilient IoT ecosystem. Furthermore, application of quantization to our best models reduces resource utilization significantly without compromising accuracy.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] An explainable deep learning-enabled intrusion detection framework in IoT networks
    Keshk, Marwa
    Koroniotis, Nickolaos
    Pham, Nam
    Moustafa, Nour
    Turnbull, Benjamin
    Zomaya, Albert Y.
    INFORMATION SCIENCES, 2023, 639
  • [32] Analyzing Adversarial Attacks Against Deep Learning for Intrusion Detection in IoT Networks
    Ibitoye, Olakunle
    Shafiq, Omair
    Matrawy, Ashraf
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [33] A hybrid deep learning-based intrusion detection system for IoT networks
    Khan, Noor Wali
    Alshehri, Mohammed S.
    Khan, Muazzam A.
    Almakdi, Sultan
    Moradpoor, Naghmeh
    Alazeb, Abdulwahab
    Ullah, Safi
    Naz, Naila
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13491 - 13520
  • [34] Innovative Defense: Deep Learning-Powered Intrusion Detection for IoT Networks
    Binbusayyis, Adel
    IEEE ACCESS, 2025, 13 : 31105 - 31120
  • [35] Enhanced and Explainable Deep Learning-Based Intrusion Detection in IoT Networks
    Gyawali, Sohan
    Sartipi, Kamran
    Van Ravesteyn, Benjamin
    Huang, Jiaqi
    Jiang, Yili
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,
  • [36] A DEEP TRANSFER LEARNING APPROACH FOR IOT/IIOT CYBER ATTACK DETECTION USING TELEMETRY DATA
    Poonkuzhali, S.
    Shobana, M.
    Jeyalakshmi, J.
    NEURAL NETWORK WORLD, 2023, 33 (04) : 225 - 244
  • [37] DeepIoT.IDS: Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection
    Maseer, Ziadoon K.
    Yusof, Robiah
    Mostafa, Salama A.
    Bahaman, Nazrulazhar
    Musa, Omar
    Al-rimy, Bander Ali Saleh
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 3945 - 3966
  • [38] A Novel Deep Learning-Based Intrusion Detection System for IoT Networks
    Awajan, Albara
    COMPUTERS, 2023, 12 (02)
  • [39] Cyber Security Intrusion Detection and Bot Data Collection using Deep Learning in the IoT
    Alotaibi, Fahad Ali
    Mishra, Shailendra
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 421 - 432
  • [40] A novel deep learning-based intrusion detection system for IoT DDoS security
    Hizal, Selman
    Cavusoglu, Unal
    Akgun, Devrim
    INTERNET OF THINGS, 2024, 28