Cyber Security Intrusion Detection and Bot Data Collection using Deep Learning in the IoT

被引:0
|
作者
Alotaibi, Fahad Ali [1 ]
Mishra, Shailendra [2 ]
机构
[1] Majmaah Univ, Dept Informat Technol, Al Majmaah, Saudi Arabia
[2] Majmaah Univ, Dept Comp Engn, Al Majmaah, Saudi Arabia
关键词
Internet of things; intrusion detection system; random neural networks; feed forward neural networks; convolutional neural networks; INTERNET; THINGS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the digital age, cybersecurity is a growing concern, especially as IoT continues to grow rapidly. Cybersecurity intrusion detection systems are critical in protecting IoT environments from malicious activity. Deep learning approaches have emerged as promising intrusion detection techniques due to their ability to automatically learn complex patterns and features from large-scale data sets. In this research, we give a detailed assessment of the use of deep learning algorithms for cybersecurity intrusion detection in IoT contexts. The study discusses the challenges of securing IoT systems, such as device heterogeneity, limited computational resources, and the dynamic nature of IoT networks. To detect intrusions in IoT environments, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have been used. The NF-UQ-NIDS and NF-Bot-IoT data sets are used for training and assessing deep learning-based intrusion detection systems. Our study also explores using deep learning approaches to identify botnets in IoT settings to counter the growing threat of botnets. Also, analyze representative bot data sets and explain their significance in understanding botnet behavior and effective defenses. The study evaluated IDS performance and traffic flow in the IoT context using various machine learning algorithms. For IoT environments, the results highlight the importance of selecting appropriate algorithms and employing effective data pre-processing techniques to improve accuracy and performance. Cyber-attack detection with the proposed system is highly accurate when compared with other algorithms for both NF-UQ-NIDS and NF-BoT-IoT data sets.
引用
收藏
页码:421 / 432
页数:12
相关论文
共 50 条
  • [1] Network Intrusion Detection for Cyber Security using Unsupervised Deep Learning Approaches
    Alom, Md Zahangir
    Taha, Tarek M.
    2017 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2017, : 63 - 69
  • [2] Intrusion Detection in IoT Using Deep Learning
    Banaamah, Alaa Mohammed
    Ahmad, Iftikhar
    SENSORS, 2022, 22 (21)
  • [3] IoT security using deep learning algorithm: intrusion detection model using LSTM
    Lija, Abitha V. K.
    Shobana, R.
    Misbha, J. Caroline
    Chandrakala, S.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2025, 17 (1-2)
  • [4] Robust Network Security: A Deep Learning Approach to Intrusion Detection in IoT
    Odeh, Ammar
    Abu Taleb, Anas
    Computers, Materials and Continua, 2024, 81 (03): : 4149 - 4169
  • [5] Machine Learning and Deep Learning in Cyber Security for IoT
    Velliangiri, S.
    Kasaraneni, Kenanya Kumar
    Lecture Notes in Electrical Engineering, 2020, 601 : 975 - 981
  • [6] Deep Learning in IoT Intrusion Detection
    Stefanos Tsimenidis
    Thomas Lagkas
    Konstantinos Rantos
    Journal of Network and Systems Management, 2022, 30
  • [7] Deep Learning in IoT Intrusion Detection
    Tsimenidis, Stefanos
    Lagkas, Thomas
    Rantos, Konstantinos
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (01)
  • [8] An Intrusion Detection System Using BoT-IoT
    Alosaimi, Shema
    Almutairi, Saad M.
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [9] Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
    Ferrag, Mohamed Amine
    Maglaras, Leandros
    Moschoyiannis, Sotiris
    Janicke, Helge
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 50