Audio Explainable Artificial Intelligence: A Review

被引:1
|
作者
Akman, Alican [1 ]
Schuller, Bjorn W. [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
来源
INTELLIGENT COMPUTING | 2024年 / 2卷
关键词
D O I
10.34133/icomputing.0074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) capabilities have grown rapidly with the introduction of cutting-edge deep-model architectures and learning strategies. Explainable AI (XAI) methods aim to make the capabilities of AI models beyond accuracy interpretable by providing explanations. The explanations are mainly used to increase model transparency, debug the model, and justify the model predictions to the end user. Most current XAI methods focus on providing visual and textual explanations that are prone to being present in visual media. However, audio explanations are crucial because of their intuitiveness in audio-based tasks and higher expressiveness than other modalities in specific scenarios, such as when understanding visual explanations requires expertise. In this review, we provide an overview of XAI methods for audio in 2 categories: exploiting generic XAI methods to explain audio models, and XAI methods specialised for the interpretability of audio models. Additionally, we discuss certain open problems and highlight future directions for the development of XAI techniques for audio modeling.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A Scoping Review on the Progress, Applicability, and Future of Explainable Artificial Intelligence in Medicine
    Gonzalez-Alday, Raquel
    Garcia-Cuesta, Esteban
    Kulikowski, Casimir A.
    Maojo, Victor
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [42] Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review
    de Vries, Bart M.
    Zwezerijnen, Gerben J. C.
    Burchell, George L.
    van Velden, Floris H. P.
    van Oordt, Catharina Willemien Menke-van der Houven
    Boellaard, Ronald
    FRONTIERS IN MEDICINE, 2023, 10
  • [43] Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
    Hassija, Vikas
    Chamola, Vinay
    Mahapatra, Atmesh
    Singal, Abhinandan
    Goel, Divyansh
    Huang, Kaizhu
    Scardapane, Simone
    Spinelli, Indro
    Mahmud, Mufti
    Hussain, Amir
    COGNITIVE COMPUTATION, 2024, 16 (01) : 45 - 74
  • [44] Explainable Artificial Intelligence in Alzheimer's Disease Classification: A Systematic Review
    Viswan, Vimbi
    Shaffi, Noushath
    Mahmud, Mufti
    Subramanian, Karthikeyan
    Hajamohideen, Faizal
    COGNITIVE COMPUTATION, 2024, 16 (01) : 1 - 44
  • [45] Tertiary Review on Explainable Artificial Intelligence: Where Do We Stand?
    van Mourik, Frank
    Jutte, Annemarie
    Berendse, Stijn E.
    Bukhsh, Faiza A.
    Ahmed, Faizan
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (03): : 1997 - 2017
  • [46] Requirements and Challenges to use Explainable Artificial Intelligence in Histopathology: A Rapid Review
    Miguel, Juan Cristian
    Grevisse, Christian
    Sardella, Antonia
    Pollo-Cattaneo, Maria F.
    2024 IEEE 12TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS, ICHI 2024, 2024, : 703 - 709
  • [47] Review and Prospect of Explainable Artificial Intelligence and Its Application in Power Systems
    Wang X.
    Dou J.
    Liu Z.
    Liu C.
    Pu T.
    He J.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (04): : 169 - 191
  • [48] Physiological signal analysis using explainable artificial intelligence: A systematic review
    Shen, Jian
    Wu, Jinwen
    Liang, Huajian
    Zhao, Zeguang
    Li, Kunlin
    Zhu, Kexin
    Wang, Kang
    Ma, Yu
    Hu, Wenbo
    Guo, Chenxu
    Zhang, Yanan
    Hu, Bin
    NEUROCOMPUTING, 2025, 618
  • [49] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    ADVANCED MATERIALS, 2024, 36 (25)
  • [50] Effects of Explainable Artificial Intelligence in Neurology
    Gombolay, G.
    Silva, A.
    Schrum, M.
    Dutt, M.
    Hallman-Cooper, J.
    Gombolay, M.
    ANNALS OF NEUROLOGY, 2023, 94 : S145 - S145