Audio Explainable Artificial Intelligence: A Review

被引:1
|
作者
Akman, Alican [1 ]
Schuller, Bjorn W. [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
来源
INTELLIGENT COMPUTING | 2024年 / 2卷
关键词
D O I
10.34133/icomputing.0074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) capabilities have grown rapidly with the introduction of cutting-edge deep-model architectures and learning strategies. Explainable AI (XAI) methods aim to make the capabilities of AI models beyond accuracy interpretable by providing explanations. The explanations are mainly used to increase model transparency, debug the model, and justify the model predictions to the end user. Most current XAI methods focus on providing visual and textual explanations that are prone to being present in visual media. However, audio explanations are crucial because of their intuitiveness in audio-based tasks and higher expressiveness than other modalities in specific scenarios, such as when understanding visual explanations requires expertise. In this review, we provide an overview of XAI methods for audio in 2 categories: exploiting generic XAI methods to explain audio models, and XAI methods specialised for the interpretability of audio models. Additionally, we discuss certain open problems and highlight future directions for the development of XAI techniques for audio modeling.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [32] Explainable and responsible artificial intelligence
    Christian Meske
    Babak Abedin
    Mathias Klier
    Fethi Rabhi
    Electronic Markets, 2022, 32 : 2103 - 2106
  • [33] Explainable artificial intelligence in pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    PATHOLOGIE, 2024, 45 (02): : 133 - 139
  • [34] Explainable artificial intelligence in ophthalmology
    Tan, Ting Fang
    Dai, Peilun
    Zhang, Xiaoman
    Jin, Liyuan
    Poh, Stanley
    Hong, Dylan
    Lim, Joshua
    Lim, Gilbert
    Teo, Zhen Ling
    Liu, Nan
    Ting, Daniel Shu Wei
    CURRENT OPINION IN OPHTHALMOLOGY, 2023, 34 (05) : 422 - 430
  • [35] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [36] Explainable Artificial Intelligence: A Survey
    Dosilovic, Filip Karlo
    Brcic, Mario
    Hlupic, Nikica
    2018 41ST INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2018, : 210 - 215
  • [37] A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques
    Nazar, Mobeen
    Alam, Muhammad Mansoor
    Yafi, Eiad
    Su'ud, Mazliham Mohd
    IEEE ACCESS, 2021, 9 : 153316 - 153348
  • [38] Explainable artificial intelligence-based approaches for climate change: a review
    Barutcu, H. Can
    Celik, Serra
    Gezer, Murat
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2025, 35 (2-4)
  • [39] Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
    Vikas Hassija
    Vinay Chamola
    Atmesh Mahapatra
    Abhinandan Singal
    Divyansh Goel
    Kaizhu Huang
    Simone Scardapane
    Indro Spinelli
    Mufti Mahmud
    Amir Hussain
    Cognitive Computation, 2024, 16 : 45 - 74
  • [40] Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review
    Vimbi Viswan
    Noushath Shaffi
    Mufti Mahmud
    Karthikeyan Subramanian
    Faizal Hajamohideen
    Cognitive Computation, 2024, 16 : 1 - 44