Audio Explainable Artificial Intelligence: A Review

被引:1
|
作者
Akman, Alican [1 ]
Schuller, Bjorn W. [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
来源
INTELLIGENT COMPUTING | 2024年 / 2卷
关键词
D O I
10.34133/icomputing.0074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) capabilities have grown rapidly with the introduction of cutting-edge deep-model architectures and learning strategies. Explainable AI (XAI) methods aim to make the capabilities of AI models beyond accuracy interpretable by providing explanations. The explanations are mainly used to increase model transparency, debug the model, and justify the model predictions to the end user. Most current XAI methods focus on providing visual and textual explanations that are prone to being present in visual media. However, audio explanations are crucial because of their intuitiveness in audio-based tasks and higher expressiveness than other modalities in specific scenarios, such as when understanding visual explanations requires expertise. In this review, we provide an overview of XAI methods for audio in 2 categories: exploiting generic XAI methods to explain audio models, and XAI methods specialised for the interpretability of audio models. Additionally, we discuss certain open problems and highlight future directions for the development of XAI techniques for audio modeling.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Review of Explainable Artificial Intelligence
    Zhao, Yanyu
    Zhao, Xiaoyong
    Wang, Lei
    Wang, Ningning
    Computer Engineering and Applications, 2023, 59 (14) : 1 - 14
  • [2] A Review of Explainable Artificial Intelligence
    Lin, Kuo-Yi
    Liu, Yuguang
    Li, Li
    Dou, Runliang
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT IV, 2021, 633 : 574 - 584
  • [3] Explainable artificial intelligence: an analytical review
    Angelov, Plamen P.
    Soares, Eduardo A.
    Jiang, Richard
    Arnold, Nicholas I.
    Atkinson, Peter M.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
  • [4] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [5] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568
  • [6] A review of Explainable Artificial Intelligence in healthcare
    Sadeghi, Zahra
    Alizadehsani, Roohallah
    Cifci, Mehmet Akif
    Kausar, Samina
    Rehman, Rizwan
    Mahanta, Priyakshi
    Bora, Pranjal Kumar
    Almasri, Ammar
    Alkhawaldeh, Rami S.
    Hussain, Sadiq
    Alatas, Bilal
    Shoeibi, Afshin
    Moosaei, Hossein
    Hladik, Milan
    Nahavandi, Saeid
    Pardalos, Panos M.
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [7] Explainable Artificial Intelligence in Education: A Comprehensive Review
    Chaushi, Blerta Abazi
    Selimi, Besnik
    Chaushi, Agron
    Apostolova, Marika
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II, 2023, 1902 : 48 - 71
  • [8] Explainable artificial intelligence for spectroscopy data: a review
    Contreras, Jhonatan
    Bocklitz, Thomas
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2024, : 603 - 615
  • [9] A Review of Trustworthy and Explainable Artificial Intelligence (XAI)
    Chamola, Vinay
    Hassija, Vikas
    Sulthana, A. Razia
    Ghosh, Debshishu
    Dhingra, Divyansh
    Sikdar, Biplab
    IEEE ACCESS, 2023, 11 : 78994 - 79015
  • [10] Explainable artificial intelligence in finance: A bibliometric review
    Chen, Xun-Qi
    Ma, Chao-Qun
    Ren, Yi-Shuai
    Lei, Yu-Tian
    Huynh, Ngoc Quang Anh
    Narayan, Seema
    FINANCE RESEARCH LETTERS, 2023, 56