A Framework to Design Efficent Blockchain-Based Decentralized Federated Learning Architectures

被引:0
|
作者
Formery, Yannis [1 ,2 ]
Mendiboure, Leo [1 ]
Villain, Jonathan [2 ]
Deniau, Virginie [2 ]
Gransart, Christophe [2 ]
机构
[1] Univ Gustave Eiffel, COSYS ERENA, F-33067 Pessac, France
[2] Univ Gustave Eiffel, COSYS LEOST, F-59650 Villeneuve Dascq, France
关键词
Blockchains; Security; Peer-to-peer computing; Data models; Federated learning; Servers; Training; Computer architecture; Smart contracts; Fault tolerant systems; Decentralized federated learning; blockchain; architecture; security; framework; TECHNOLOGY; ROBUSTNESS; SECURITY; TOPOLOGY; ATTACKS;
D O I
10.1109/OJCS.2024.3488512
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed machine learning, and Decentralized Federated Learning in particular, is emerging as an effective solution to cope with the ever-increasing amount of data and the need to process it faster and more reliably. It enables machine learning models to be trained without centralizing user data, which improves data confidentiality and optimizes performance compared with centralized approaches. However, scaling up such systems can have limitations in terms of data and model traceability and security. To address this limitation, the integration of Blockchain has been proposed, forming a global system leveraging Blockchain, called Blockchain Based Decentralized Federated Learning (BDFL), and taking advantage of the benefits of this technology, namely transparency, immutability and decentralization. For the time being, few studies have sought to characterize these BDFL systems, although it seems that they can be broken down into a set of layers (blockchain, interconnection of DFL nodes, client selection, data transmission, consensus management) that could have a major impact on the operation of the BDFL as a whole. The aim of this article is therefore to respond to this limitation by highlighting the different layers existing in the architecture of a BDFL system and the solutions proposed in the literature that can be integrated to optimise both the performance and the security of the system. This could ultimately lead to the design of more secure and efficient architectures with greater resilience to attacks and architectural changes.
引用
收藏
页码:705 / 723
页数:19
相关论文
共 50 条
  • [41] Blockchain-Based Decentralized Model Aggregation for Cross-Silo Federated Learning in Industry 4.0
    Ranathunga, Tharindu
    McGibney, Alan
    Rea, Susan
    Bharti, Sourabh
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (05) : 4449 - 4461
  • [42] A Blockchain-Based Decentralized Framework for Fair Data Processing
    Li, Guangcheng
    Zhao, Qinglin
    Wang, Yu
    Qiu, Tie
    Xie, Kan
    Feng, Li
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (03): : 2301 - 2315
  • [43] Kaya: A Testing Framework for Blockchain-based Decentralized Applications
    Wu, Zhenhao
    Zhang, Jiashuo
    Gao, Jianbo
    Li, Yue
    Li, Qingshan
    Guan, Zhi
    Chen, Zhong
    2020 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION (ICSME 2020), 2020, : 826 - 829
  • [44] A Basic Framework of Blockchain-Based Decentralized Verifiable Outsourcing
    Wang, Han
    Wang, Xu An
    Wang, Wei
    Xiao, Shuai
    ADVANCES IN INTELLIGENT NETWORKING AND COLLABORATIVE SYSTEMS, INCOS - 2019, 2020, 1035 : 415 - 421
  • [45] Incentive Mechanism Design for Joint Resource Allocation in Blockchain-Based Federated Learning
    Wang, Zhilin
    Hu, Qin
    Li, Ruinian
    Xu, Minghui
    Xiong, Zehui
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (05) : 1536 - 1547
  • [46] Secure and decentralized federated learning framework with non-IID data based on blockchain
    Zhang, Feng
    Zhang, Yongjing
    Ji, Shan
    Han, Zhaoyang
    HELIYON, 2024, 10 (05)
  • [47] Blockchain-based optimized edge node selection and privacy preserved framework for federated learning
    Qammar, Attia
    Naouri, Abdenacer
    Ding, Jianguo
    Ning, Huansheng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 3203 - 3218
  • [48] HBFL: A hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection
    Sarhan, Mohanad
    Lo, Wai Weng
    Layeghy, Siamak
    Portmann, Marius
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [49] Blockchain-Based Federated Learning: A Survey and New Perspectives
    Ning, Weiguang
    Zhu, Yingjuan
    Song, Caixia
    Li, Hongxia
    Zhu, Lihui
    Xie, Jinbao
    Chen, Tianyu
    Xu, Tong
    Xu, Xi
    Gao, Jiwei
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [50] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)