Short-term power load forecasting based on big data

被引:0
|
作者
State Grid Information & Telecommunication Branch, Xicheng District, Beijing [1 ]
100761, China
不详 [2 ]
100070, China
不详 [3 ]
100031, China
机构
来源
关键词
D O I
10.13334/j.0258-8013.pcsee.2015.01.005
中图分类号
学科分类号
摘要
The short-term power load forecasting method had been researched based on the big data. And combined the local weighted linear regression and cloud computing platform, the parallel local weighted linear regression model was established. In order to eliminate the bad data, bad data classification model was built based on the maximum entropy algorithm to ensure the effectiveness of the historical data. The experimental data come from a smart industry park of Gansu province. Experimental results show that the proposed parallel local weighted linear regression model for short-term power load forecasting is feasible; and the average root mean square error is 3. 01% and fully suitable for the requirements of load forecasting, moreover, it can greatly reduce compute time of load forecasting, and improve the prediction accuracy. © 2015 Chin. Soc. for Elec. Eng..
引用
收藏
相关论文
共 50 条
  • [41] Multifeature Short-Term Power Load Forecasting Based on GCN-LSTM
    Chen, Houhe
    Zhu, Mingyang
    Hu, Xiao
    Wang, Jiarui
    Sun, Yong
    Yang, Jinduo
    Li, Baoju
    Meng, Xiangdong
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2023, 2023
  • [42] Short-Term Power Load Forecasting Based on VMD-SHO-LSTM
    Gao, Qingzhong
    Wu, Shuai
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 346 - 353
  • [43] The Short-term Load Forecasting of Power System Based on Kalman Filter Algorithm
    Peng Xiu-yang
    Cui Yan-qing
    Guan Ruo-lin
    PROCEEDINGS OF ISCRAM ASIA 2012 CONFERENCE ON INFORMATION SYSTEMS FOR CRISIS RESPONSE AND MANAGEMENT, 2012, : 255 - 259
  • [44] A Short-term Power Load Forecasting Based on CSWOA-TPA-BiGRU
    Xie, Chen
    Yang, Ling
    Zhu, Difan
    Li, Jiewen
    Hu, Wenbo
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 677 - 681
  • [45] Short-Term Power Load Forecasting Based on the PSO-RVR Model
    Zhang Yan
    Yuan Genji
    Ji Hanran
    Fan Hui
    Li Jinjiang
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [46] Forecasting algorithm of short-term electric power load based on improved FLN
    Zhang, Haitao
    Chen, Zonghai
    Zhu, Liuzhang
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2004, 19 (05): : 92 - 96
  • [47] A Short-term Power Load Forecasting Method Based on Spatiotemporal Graph Attention
    Li W.
    Yang G.
    Wen M.
    Luo S.
    Yu Z.
    Jiang Y.
    Wang D.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (02): : 57 - 67
  • [48] A Short-term Power Load Forecasting Method Based on BP Neural Network
    Li, Lingjuan
    Huang, Wen
    CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 1647 - 1650
  • [49] Short-term power load forecasting based on empirical mode decomposition and ANN
    Zheng, Lian-Qing
    Zheng, Yan-Qiu
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2009, 37 (23): : 66 - 69
  • [50] Short-term Load Forecasting of Electric Power System Based On Meteorological Factors
    Liu, Jing
    PROCEEDINGS OF THE6TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, BIOTECHNOLOGY AND ENVIRONMENT (ICMMBE 2016), 2016, 83 : 195 - 200