Robust visual tracking via weighted spatio-temporal context learning

被引:0
|
作者
Xu, Jian-Qiang [1 ,2 ]
Lu, Yao [1 ,2 ]
机构
[1] School of Computer Science, Beijing Institute of Technology, Beijing,100081, China
[2] Beijing Laboratory of Intelligent Information Technology, Beijing,100081, China
来源
关键词
Target tracking;
D O I
10.16383/j.aas.2015.c150073
中图分类号
TP181 [自动推理、机器学习];
学科分类号
摘要
Implementing a robust visual tracker is a challenging task due to many disturbing factors such as illumination changes, appearance changes, rotation, partial or full occlusion, etc. The local context surrounding of the target could provide much effective information in getting a robust tracker. The spatio-temporal context (STC) learning algorithm proposed recently considers the information of the dense context around the target and has achieved a better performance. However, STC treats the whole region of the context equally, which weakens the effectiveness of the context information. In this paper, we propose a novel weighted spatio-temporal context (WSTC) learning algorithm. Our algorithm considers the surrounding context discriminatively and incorporates a weighted matrix by evaluating the motion consistencies of different regions with the tracking target. Extensive experimental results on public benchmark databases show that our algorithm outperforms the original STC algorithm and other state-of-the-art algorithms. Copyright © 2015 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:1901 / 1912
相关论文
共 50 条
  • [21] Minimum barrier distance based tracking via spatio-temporal context learning
    Zhi-yuan Yang
    Bin Wu
    Optoelectronics Letters, 2019, 15 : 75 - 80
  • [22] Minimum barrier distance based tracking via spatio-temporal context learning
    杨志远
    吴斌
    Optoelectronics Letters, 2019, 15 (01) : 75 - 80
  • [23] Minimum barrier distance based tracking via spatio-temporal context learning
    Yang Zhi-yuan
    Wu Bin
    OPTOELECTRONICS LETTERS, 2019, 15 (01) : 75 - 80
  • [24] Learning spatio-temporal correlation filter for visual tracking
    Yan, Youmin
    Guo, Xixian
    Tang, Jin
    Li, Chenglong
    Wang, Xin
    NEUROCOMPUTING, 2021, 436 : 273 - 282
  • [25] Deep learning of spatio-temporal information for visual tracking
    Gwangmin Choe
    Ilmyong Son
    Chunhwa Choe
    Hyoson So
    Hyokchol Kim
    Gyongnam Choe
    Multimedia Tools and Applications, 2022, 81 : 17283 - 17302
  • [26] Deep learning of spatio-temporal information for visual tracking
    Choe, Gwangmin
    Son, Ilmyong
    Choe, Chunhwa
    So, Hyoson
    Kim, Hyokchol
    Choe, Gyongnam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (12) : 17283 - 17302
  • [27] Robust visual tracking via spatio-temporal adaptive and channel selective correlation filters
    Liang, Yanjie
    Liu, Yi
    Yan, Yan
    Zhang, Liming
    Wang, Hanzi
    PATTERN RECOGNITION, 2021, 112
  • [28] UAV Visual Object Tracking Based on Spatio-Temporal Context
    He, Yongxiang
    Chao, Chuang
    Zhang, Zhao
    Guo, Hongwu
    Ma, Jianjun
    DRONES, 2024, 8 (12)
  • [29] Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking
    Yang, Haoran
    Wang, Juanjuan
    Miao, Yi
    Yang, Yulu
    Zhao, Zengshun
    Wang, Zhigang
    Sun, Qian
    Wu, Dapeng Oliver
    MATHEMATICS, 2019, 7 (11)
  • [30] Online Convolutional Network Tracking via Spatio-Temporal Context
    Liu P.
    Wang H.
    Luo Y.
    Du Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2018, 55 (12): : 2785 - 2793