Minimum barrier distance based tracking via spatio-temporal context learning

被引:0
|
作者
Zhi-yuan Yang
Bin Wu
机构
[1] Tianjin University,The State Key Laboratory of Precision Measuring Technology and Instruments
来源
Optoelectronics Letters | 2019年 / 15卷
关键词
A;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an efficient and robust tracking method based on minimum barrier distance (MBD) and spatio-temporal context (STC) learning. It is robust to noise and blur, and can be evaluated approximately through a Dijkstra-like algorithm, leading to fast computation. We adopt the MBD transform to measure the weights of context pixels, and formulate the spatio-temporal relationship between the object and its surrounding region based on a Bayesian framework to estimate the most likely location of the target. A bounded scale update model is proposed to estimate the size of the object. The whole proposed method runs at nearly 160 frames per second (FPS) on an i5 machine. Extensive experimental results show it has comparable or better comprehensive performance than the original STC and some other leading methods.
引用
收藏
页码:75 / 80
页数:5
相关论文
共 50 条
  • [1] Minimum barrier distance based tracking via spatio-temporal context learning
    杨志远
    吴斌
    Optoelectronics Letters, 2019, 15 (01) : 75 - 80
  • [2] Minimum barrier distance based tracking via spatio-temporal context learning
    Yang Zhi-yuan
    Wu Bin
    OPTOELECTRONICS LETTERS, 2019, 15 (01) : 75 - 80
  • [3] ROBUST TRACKING VIA WEIGHTED SPATIO-TEMPORAL CONTEXT LEARNING
    Xu, Jianqiang
    Lu, Yao
    Liu, Jinwu
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 413 - 416
  • [4] Learning spatio-temporal context via hierarchical features for visual tracking
    Cao, Yi
    Ji, Hongbing
    Zhang, Wenbo
    Xue, Fei
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 66 : 50 - 65
  • [5] Oversaturated part-based visual tracking via spatio-temporal context learning
    Liu, Wei
    Li, Jicheng
    Shi, Zhiguang
    Chen, Xiaotian
    Chen, Xiao
    APPLIED OPTICS, 2016, 55 (25) : 6960 - 6968
  • [6] Robust visual tracking via weighted spatio-temporal context learning
    Xu, Jian-Qiang
    Lu, Yao
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (11): : 1901 - 1912
  • [7] Fast Visual Tracking via Dense Spatio-temporal Context Learning
    Zhang, Kaihua
    Zhang, Lei
    Liu, Qingshan
    Zhang, David
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 127 - 141
  • [8] An effective Object Tracking Based on Spatio-Temporal Context Learning and Hog
    Wang, Zhenhai
    Xu, Bo
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 661 - 664
  • [9] Adaptive spatio-temporal context learning for visual tracking
    Zhang, Yaqin
    Wang, Liejun
    Qin, Jiwei
    IMAGING SCIENCE JOURNAL, 2019, 67 (03): : 136 - 147
  • [10] Fast Tracking via Spatio-Temporal Context Learning based on Multi-color Attributes and PCA
    Liu, Yixiu
    Zhang, Yunzhou
    Hu, Meiyu
    Si, Pengju
    Xia, Chongkun
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 398 - 403