Robust visual tracking via weighted spatio-temporal context learning

被引:0
|
作者
Xu, Jian-Qiang [1 ,2 ]
Lu, Yao [1 ,2 ]
机构
[1] School of Computer Science, Beijing Institute of Technology, Beijing,100081, China
[2] Beijing Laboratory of Intelligent Information Technology, Beijing,100081, China
来源
关键词
Target tracking;
D O I
10.16383/j.aas.2015.c150073
中图分类号
TP181 [自动推理、机器学习];
学科分类号
摘要
Implementing a robust visual tracker is a challenging task due to many disturbing factors such as illumination changes, appearance changes, rotation, partial or full occlusion, etc. The local context surrounding of the target could provide much effective information in getting a robust tracker. The spatio-temporal context (STC) learning algorithm proposed recently considers the information of the dense context around the target and has achieved a better performance. However, STC treats the whole region of the context equally, which weakens the effectiveness of the context information. In this paper, we propose a novel weighted spatio-temporal context (WSTC) learning algorithm. Our algorithm considers the surrounding context discriminatively and incorporates a weighted matrix by evaluating the motion consistencies of different regions with the tracking target. Extensive experimental results on public benchmark databases show that our algorithm outperforms the original STC algorithm and other state-of-the-art algorithms. Copyright © 2015 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:1901 / 1912
相关论文
共 50 条
  • [1] ROBUST TRACKING VIA WEIGHTED SPATIO-TEMPORAL CONTEXT LEARNING
    Xu, Jianqiang
    Lu, Yao
    Liu, Jinwu
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 413 - 416
  • [2] Robust Visual Tracking via Multi-Scale Spatio-Temporal Context Learning
    Xue, Wanli
    Xu, Chao
    Feng, Zhiyong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) : 2849 - 2860
  • [3] Learning spatio-temporal context via hierarchical features for visual tracking
    Cao, Yi
    Ji, Hongbing
    Zhang, Wenbo
    Xue, Fei
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 66 : 50 - 65
  • [4] Fast Visual Tracking via Dense Spatio-temporal Context Learning
    Zhang, Kaihua
    Zhang, Lei
    Liu, Qingshan
    Zhang, David
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 127 - 141
  • [5] Visual Tracking With Weighted Adaptive Local Sparse Appearance Model via Spatio-Temporal Context Learning
    Li, Zhetao
    Zhang, Jie
    Zhang, Kaihua
    Li, Zhiyong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4478 - 4489
  • [6] Adaptive spatio-temporal context learning for visual tracking
    Zhang, Yaqin
    Wang, Liejun
    Qin, Jiwei
    IMAGING SCIENCE JOURNAL, 2019, 67 (03): : 136 - 147
  • [7] Robust Visual Tracking with Dual Spatio-Temporal Context Trackers
    Sun, Shiyan
    Zhang, Hong
    Yuan, Ding
    SEVENTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2015), 2015, 9817
  • [8] Robust Visual Tracking via Spatio-Temporal Cue Integration
    He, Yang
    Pei, Mingtao
    Yang, Min
    Wu, Yuwei
    Liang, Wei
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [9] Online Spatio-temporal Structural Context Learning for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 716 - 729
  • [10] Adaptive Spatio-Temporal Context Learning for Visual Target Tracking
    Marvasti-Zadeh, Seyed Mojtaba
    Ghanei-Yakhdan, Hossein
    Kasaei, Shohreh
    2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 10 - 14