Modelling of heat and mass transfer in a two-phase closed thermosyphon

被引:1
|
作者
Lataoui, Zied [1 ]
Benselama, Adel M. [2 ]
机构
[1] Univ Monastir, Ecole Natl Ingenieurs Monastir, Lab Etud Syst Therm & Energet, Ave Ibn El Jazzar, Monastir 5019, Tunisia
[2] Univ Poitiers, CNRS ENSMA, Inst Pprime FTC COST, 1 Ave Clement Ader, F-86961 Futuroscope, France
关键词
Thermosyphon; Two-phase flow; Volume of fluid; Phase change; Heat transfer performance; INCLINATION ANGLE; FILL RATIO; THERMAL PERFORMANCE; SOLAR COLLECTORS; PIPE; WATER; CONDENSATION; SIMULATION; PARAMETERS;
D O I
10.1016/j.energy.2024.133851
中图分类号
O414.1 [热力学];
学科分类号
摘要
A CFD model is developed to simulate the heat and mass transfer inside a two-phase closed thermosyphon. Based on the "volume of fluid" method, governing equations are solved using the OpenFOAM utilities. The involved complex phenomena like evaporation and condensation occurring in such a device and associated with twophase flow are investigated. A noticeable novelty of this model is that neither artificial, ad hoc nor specific nucleation means is needed to trigger evaporation along the heat source walls; an altogether unique phase change model is valid and uniformly used within the flow occurring inside the thermosyphon. The numerical results are compared to well-documented experimental data showing very good agreement: maximum deviation of 1 % and 2.7 % are obtained for mean temperature and condenser pressure, respectively. The axial thermal resistance values are also compared with the experimental data. Fair agreement was obtained in the overall equivalent resistance (26.4-32.5 %) and in the evaporator axial resistance (25-27.5 %). In addition, the evaporator slug flow pattern is successfully captured by the model. The liquid fraction distribution inside the thermosyphon is analyzed as time evolves. It shows, in particular, that bubble activation and growth have the same trend as previous experimental visualization results, namely denser activation close to the meniscus. The velocity distribution shows also recirculation in the top of the condenser zones and above the liquid meniscus in the evaporator zone, too, as a direct effect of buoyancy and natural convection. As activated bubbles rise and coalesce into larger bubbles, the occurrence of a slug flow is observed. Furthermore, the tested model had shown its efficiency to predict the main fluid flow and thermal characteristics of a thermosyphon when pseudo-steady state is reached.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Heat transfer rate characteristics of two-phase closed thermosyphon heat exchanger
    Song, Wei
    Zheng, Changjin
    Yang, Jiaming
    RENEWABLE ENERGY, 2021, 177 : 397 - 410
  • [12] Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon
    Kamyar, A.
    Ong, K. S.
    Saidur, R.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 65 : 610 - 618
  • [13] Heat transfer characteristics of titanium/water two-phase closed thermosyphon
    Qi Baojin
    Zhang Li
    Xu Hong
    Sun Yan
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (09) : 2174 - 2179
  • [14] Heat transfer in a two-phase closed thermosyphon working in Polar Regions
    Kuznetsov, G., V
    Ponomarev, K. O.
    Feoktistov, D., V
    Orlova, E. G.
    Lyulin, Yu, V
    Ouerdane, H.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2021, 22
  • [15] Numerical Analysis of Convective Heat Transfer in a Closed Two-Phase Thermosyphon
    Kuznetsov, G. V.
    Al-Ani, M. A.
    Sheremet, M. A.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2011, 20 (02) : 201 - 210
  • [16] Numerical analysis of convective heat transfer in a closed two-phase thermosyphon
    G. V. Kuznetsov
    M. A. Al-Ani
    M. A. Sheremet
    Journal of Engineering Thermophysics, 2011, 20 : 201 - 210
  • [17] Vaporization Heat Transfer in a Small Diameter Closed Two-Phase Thermosyphon
    Padovan, Andrea
    Bortolin, Stefano
    Rossato, Marco
    Filippeschi, Sauro
    Del Col, Davide
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2019, 141 (09):
  • [18] Laboratory investigation of the heat transfer characteristics of a two-phase closed thermosyphon
    Zhang, Mingyi
    Lai, Yuanming
    Dong, Yuanhong
    Jin, Long
    Pei, Wansheng
    Harbor, Jon
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2013, 95 : 67 - 73
  • [19] Study on Mathematical Model for Condensation Heat Transfer in Two-phase Closed Thermosyphon
    Ren, Bin
    Pu, Zhe
    Du, Yannan
    Tang, Xiaoying
    Yang, Yuqing
    Lu, Hongliang
    2020 INTERNATIONAL CONFERENCE ON SUSTAINABLE DEVELOPMENT AND ENVIRONMENTAL SCIENCE, 2020, 552
  • [20] Heat transfer characteristics of a two-phase closed thermosyphon to the fill charge ratio
    Park, YJ
    Kang, HK
    Kim, CJ
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (23) : 4655 - 4661