Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation

被引:0
|
作者
Du, Hanwen [1 ]
Yuan, Huanhuan [1 ]
Zhao, Pengpeng [1 ]
Wang, Deqing [2 ]
Sheng, Victor S. [3 ]
Liu, Yanchi [4 ]
Liu, Guanfeng [5 ]
Zhao, Lei [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215003, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[3] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
[4] Rutgers State Univ, New Brunswick, NJ 08854 USA
[5] Macquarie Univ, Sydney 2109, Australia
关键词
Task analysis; Self-supervised learning; Motion pictures; Predictive models; Behavioral sciences; Current transformers; Computational modeling; Sequential recommendation; self-supervised learning; feature modeling; NETWORK;
D O I
10.1109/TKDE.2023.3343345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive learning with Transformer-based sequence encoder has gained predominance for sequential recommendation due to its ability to mitigate the data noise and the data sparsity issue. However, existing contrastive learning approaches for sequential recommendation still suffer from two limitations. First, they mainly center on left-to-right unidirectional Transformers as base encoders, which are suboptimal for sequential recommendation because user behaviors may not be a rigid left-to-right sequence. Second, they devise contrastive learning objectives only from the sequence level, neglecting the rich self-supervision signals from the feature level. To address these limitations, we propose a novel framework called Feature-aware Contrastive Learning with bidirectional Transformers for sequential Recommendation (FCLRec) to effectively leverage feature information for sequential recommendation. Specifically, we first augment bidirectional Transformers with a novel feature-aware self-attention module that is able to simultaneously model the complex relationships between sequences and features. Next, we propose a novel feature-aware contrastive learning objective that generates a collection of positive samples via three types of augmentations from three different levels. Finally, we adopt feature prediction as an auxiliary task to strengthen the connections between items and features. Our experimental results on four public benchmark datasets show that FCLRec outperforms the state-of-the-art methods for sequential recommendation.
引用
收藏
页码:8192 / 8205
页数:14
相关论文
共 50 条
  • [41] Time-Aware Multibehavior Contrastive Learning for Social Recommendation
    Wei, Chuyuan
    Hu, Chuanhao
    Wang, Chang-Dong
    Huang, Shuqiang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 6424 - 6435
  • [42] Users' Preference-Aware Music Recommendation with Contrastive Learning
    Wang, Jian
    Ma, Huifang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XII, ICIC 2024, 2024, 14873 : 309 - 320
  • [43] A Feature-Aware Semi-Supervised Learning Approach for Automotive Ethernet
    Shibly, Kabid Hassan
    Hossain, Md Delwar
    Inoue, Hiroyuki
    Taenaka, Yuzo
    Kadobayashi, Youki
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 426 - 431
  • [44] A Feature-Aware Online Learning Approach for Support Vector Machine Classification
    Liu, Fang
    Lee, Kee Jin
    Hong, Jihoon
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 254 - 259
  • [45] Intent with knowledge-aware multiview contrastive learning for recommendation
    Tao, Shaohua
    Qiu, Runhe
    Cao, Yan
    Zhao, Huiyang
    Ping, Yuan
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 1349 - 1363
  • [46] A Review-aware Graph Contrastive Learning Framework for Recommendation
    Shuai, Jie
    Zhang, Kun
    Wu, Le
    Sun, Peijie
    Hong, Richang
    Wang, Meng
    Li, Yong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1283 - 1293
  • [47] Intelligible graph contrastive learning with attention-aware for recommendation
    Mo, Xian
    Zhao, Zihang
    He, Xiaoru
    Qi, Hang
    Liu, Hao
    NEUROCOMPUTING, 2025, 614
  • [48] Intent with knowledge-aware multiview contrastive learning for recommendation
    Shaohua Tao
    Runhe Qiu
    Yan Cao
    Huiyang Zhao
    Yuan Ping
    Complex & Intelligent Systems, 2024, 10 : 1349 - 1363
  • [49] HIERARCHICAL AND CONTRASTIVE REPRESENTATION LEARNING FOR KNOWLEDGE-AWARE RECOMMENDATION
    Wu, Bingchao
    Kang, Yangyuxuan
    Zan, Daoguang
    Guan, Bei
    Wang, Yongji
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1050 - 1055
  • [50] Feature-aware natural texture synthesis
    Wu, Fuzhang
    Dong, Weiming
    Kong, Yan
    Mei, Xing
    Yan, Dong-Ming
    Zhang, Xiaopeng
    Paul, Jean-Claude
    VISUAL COMPUTER, 2016, 32 (01): : 43 - 55