Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation

被引:0
|
作者
Du, Hanwen [1 ]
Yuan, Huanhuan [1 ]
Zhao, Pengpeng [1 ]
Wang, Deqing [2 ]
Sheng, Victor S. [3 ]
Liu, Yanchi [4 ]
Liu, Guanfeng [5 ]
Zhao, Lei [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215003, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[3] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
[4] Rutgers State Univ, New Brunswick, NJ 08854 USA
[5] Macquarie Univ, Sydney 2109, Australia
关键词
Task analysis; Self-supervised learning; Motion pictures; Predictive models; Behavioral sciences; Current transformers; Computational modeling; Sequential recommendation; self-supervised learning; feature modeling; NETWORK;
D O I
10.1109/TKDE.2023.3343345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive learning with Transformer-based sequence encoder has gained predominance for sequential recommendation due to its ability to mitigate the data noise and the data sparsity issue. However, existing contrastive learning approaches for sequential recommendation still suffer from two limitations. First, they mainly center on left-to-right unidirectional Transformers as base encoders, which are suboptimal for sequential recommendation because user behaviors may not be a rigid left-to-right sequence. Second, they devise contrastive learning objectives only from the sequence level, neglecting the rich self-supervision signals from the feature level. To address these limitations, we propose a novel framework called Feature-aware Contrastive Learning with bidirectional Transformers for sequential Recommendation (FCLRec) to effectively leverage feature information for sequential recommendation. Specifically, we first augment bidirectional Transformers with a novel feature-aware self-attention module that is able to simultaneously model the complex relationships between sequences and features. Next, we propose a novel feature-aware contrastive learning objective that generates a collection of positive samples via three types of augmentations from three different levels. Finally, we adopt feature prediction as an auxiliary task to strengthen the connections between items and features. Our experimental results on four public benchmark datasets show that FCLRec outperforms the state-of-the-art methods for sequential recommendation.
引用
收藏
页码:8192 / 8205
页数:14
相关论文
共 50 条
  • [31] Reliable Data Augmented Contrastive Learning for Sequential Recommendation
    Zhao, Mankun
    Sun, Aitong
    Yu, Jian
    Li, Xuewei
    He, Dongxiao
    Yu, Ruiguo
    Yu, Mei
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 694 - 705
  • [32] Meta-optimized Contrastive Learning for Sequential Recommendation
    Qin, Xiuyuan
    Yuan, Huanhuan
    Zhao, Pengpeng
    Fang, Junhua
    Zhuang, Fuzhen
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 89 - 98
  • [33] HICL: Hierarchical Intent Contrastive Learning for sequential recommendation
    Kang, Yan
    Yuan, Yancong
    Pu, Bin
    Yang, Yun
    Zhao, Lei
    Guo, Jing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [34] Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation
    Qin, Xiuyuan
    Yuan, Huanhuan
    Zhao, Pengpeng
    Liu, Guanfeng
    Zhuang, Fuzhen
    Sheng, Victor S.
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 548 - 556
  • [35] Learnable Model Augmentation Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhao, Pengpeng
    Xian, Xuefeng
    Liu, Guanfeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 3963 - 3976
  • [36] Feature-Aware Attentive Variational Auto-Encoder for Top-N Recommendation
    Pang, Bo
    Bao, Han
    Wang, Chongjun
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 53 - 58
  • [37] Transformers for Sequential Recommendation
    Petrov, Aleksandr V.
    Macdonald, Craig
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT V, 2024, 14612 : 369 - 374
  • [38] Integrating Offline Reinforcement Learning with Transformers for Sequential Recommendation
    Xi, Xumei
    Zhao, Yuke
    Liu, Quan
    Ouyang, Liwen
    Wu, Yang
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1103 - 1108
  • [39] Feature-Aware Pixel Art Animation
    Kuo, Ming-Hsun
    Yang, Yong-Liang
    Chu, Hung-Kuo
    COMPUTER GRAPHICS FORUM, 2016, 35 (07) : 411 - 420
  • [40] Feature-aware unsupervised learning with joint variational attention and automatic clustering
    Wang, Ru
    Li, Lin
    Wang, Peipei
    Tao, Xiaohui
    Liu, Peiyu
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 923 - 930