Adaptive K-means clustering for color image segmentation

被引:0
|
作者
Yong Z. [1 ]
Shi H. [1 ]
机构
[1] School of Computer Science, China University of Mining and Technology, Xuzhou
关键词
Cluster validity index; Image segmentation; K-means clustering; Octree;
D O I
10.4156/AISS.vol3.issue10.27
中图分类号
学科分类号
摘要
According to the indeterminate clustering number k and initial cluster center in K-means clustering algorithm while used in color image segmentation, a new segmentation approach by adaptive K-means clustering algorithm was proposed. The major improvements include: Firstly, adopt Octree color quantization algorithm to quantize the color image, shown with representative characteristics; then, apply a mean-equivalent method to determine initial cluster center, based on the color distribution of image; finally, cluster with K-means algorithm, and define the optimal clustering number adaptively through a new cluster validity index designed in this paper. Experimental results show that the proposed algorithm not only gives more accurate clustering number than the other algorithm, but also be effective, which greatly reduces the human intervention and has high practical value.
引用
收藏
页码:216 / 223
页数:7
相关论文
共 50 条
  • [41] Automatic Centroids Selection in K-means Clustering Based Image Segmentation
    Pugazhenthi, A.
    Singhai, Jyoti
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [42] Image segmentation based on rough entropy and K-means clustering algorithm
    Xu, Yi
    Li, Long-Shu
    Li, Xue-Jun
    Huadong Ligong Daxue Xuebao /Journal of East China University of Science and Technology, 2007, 33 (02): : 255 - 258
  • [43] A volume segmentation algorithm for medical image based on K-means clustering
    Li Xinwu
    2008 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PROCEEDINGS, 2008, : 881 - 884
  • [44] Refined SAR Image Segmentation Algorithm Based on K-means Clustering
    Xing, Tao
    Hu, Qingrong
    Li, Jun
    Wang, Guanyong
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [45] An active contour model driven by K-means clustering for image segmentation
    Ge, Pengqiang
    Chen, Yiyang
    Wang, Guina
    Weng, Guirong
    Chen, Hongtian
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4595 - 4600
  • [46] An improved K-means clustering method for cDNA microarray image segmentation
    Wang, T. N.
    Li, T. J.
    Shao, G. F.
    Wu, S. X.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (03) : 7771 - 7781
  • [47] Optimal color image enhancement using wavelet and K-means clustering
    Grema Kaganami H.
    Beiji Z.
    Sami Soliman M.
    International Journal of Digital Content Technology and its Applications, 2011, 5 (01) : 112 - 122
  • [48] Fast Color Quantization by K-Means Clustering Combined with Image Sampling
    Frackiewicz, Mariusz
    Mandrella, Aron
    Palus, Henryk
    SYMMETRY-BASEL, 2019, 11 (08):
  • [49] Color image segmentation based on hybridization between Canny and k-means
    Khrissi, Lahbib
    El Akkad, Nabil
    Satori, Hassan
    Satori, Khalid
    2019 7TH MEDITERRANEAN CONGRESS OF TELECOMMUNICATIONS (CMT 2019), 2019,
  • [50] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163