Adaptive K-means clustering for color image segmentation

被引:0
|
作者
Yong Z. [1 ]
Shi H. [1 ]
机构
[1] School of Computer Science, China University of Mining and Technology, Xuzhou
关键词
Cluster validity index; Image segmentation; K-means clustering; Octree;
D O I
10.4156/AISS.vol3.issue10.27
中图分类号
学科分类号
摘要
According to the indeterminate clustering number k and initial cluster center in K-means clustering algorithm while used in color image segmentation, a new segmentation approach by adaptive K-means clustering algorithm was proposed. The major improvements include: Firstly, adopt Octree color quantization algorithm to quantize the color image, shown with representative characteristics; then, apply a mean-equivalent method to determine initial cluster center, based on the color distribution of image; finally, cluster with K-means algorithm, and define the optimal clustering number adaptively through a new cluster validity index designed in this paper. Experimental results show that the proposed algorithm not only gives more accurate clustering number than the other algorithm, but also be effective, which greatly reduces the human intervention and has high practical value.
引用
收藏
页码:216 / 223
页数:7
相关论文
共 50 条
  • [21] Image segmentation using transition region and K-means clustering
    Rosyadi, Ahmad Wahyu
    Suciati, Nanik
    1600, International Association of Engineers (47): : 47 - 55
  • [22] THE POTENTIAL OF DOUBLE K-MEANS CLUSTERING FOR BANANA IMAGE SEGMENTATION
    Hu, Meng-han
    Dong, Qing-li
    Liu, Bao-lin
    Malakar, Pradeep K.
    JOURNAL OF FOOD PROCESS ENGINEERING, 2014, 37 (01) : 10 - 18
  • [23] An improved K-means clustering algorithm for fish image segmentation
    Yao, Hong
    Duan, Qingling
    Li, Daoliang
    Wang, Jianping
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 784 - 792
  • [24] Image segmentation based on swarm intelligence and K-means clustering
    Zhao, Bo
    Qi, Lixia
    Mao, Enrong
    Song, Zhenghe
    Zhu, Zhongxiang
    Journal of Information and Computational Science, 2007, 4 (03): : 937 - 945
  • [25] Standard and Genetic k-means Clustering Techniques in Image Segmentation
    Malyszko, Dariusz
    Wierzchon, Slawomir T.
    6TH INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT APPLICATIONS, PROCEEDINGS, 2007, : 299 - +
  • [26] Automatic Image Annotation Using Color K-Means Clustering
    Jamil, Nursuriati
    Sa'adan, Siti Aisyah
    VISUAL INFORMATICS: BRIDGING RESEARCH AND PRACTICE, 2009, 5857 : 645 - 652
  • [27] Color Image Segmentation via Improved K-Means Algorithm
    Kumar, Ajay
    Kumar, Shishir
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (03) : 46 - 53
  • [28] Segmentation of Rapeseed Color Drone Images Using K-Means Clustering
    Yang, Kang
    Liu, Changhua
    Wu, Xiaoming
    Li, Hao
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [29] Histogram Thresholding for Automatic Color Segmentation Based on k-means Clustering
    Prahara, Adhi
    Yanto, Iwan Tri Riyadi
    Herawan, Tutut
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 344 - 354
  • [30] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):