Partial convolutional reparameterization network for lightweight image super-resolution

被引:1
|
作者
Zhang, Long [1 ]
Wan, Yi [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, 222 S Tianshui Rd, Lanzhou 730000, Peoples R China
关键词
Single image super-resolution; Lightweight super-resolution network; Partial convolutional reparameterization network; Attention module;
D O I
10.1007/s11554-024-01565-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, convolutional neural networks (CNNs) have made significant strides in single image super-resolution (SISR). However, redundancy persists in network models concerning both channels and network structures, constituting a challenge in designing lightweight super-resolution (SR) networks. Consequently, finding a balance between efficiency and performance has emerged as the focus in SR research. In response to these challenges, we propose the Partial Convolutional Reparameterization Network (PCRN) for lightweight SR. Specifically, we initially employ partial convolution to reduce channel redundancy. Subsequently, we employ a complex network structure during model training, while in the inference stage, we utilize reparameterization techniques to compress the model, thus reducing redundancy in the network structure. Moreover, we have introduced enhanced spatial attention (ESA) and efficient channel attention (ECA) modules into our approach to enhance the model's capability to extract key information. In comparative experiments, the proposed PCRN demonstrates superior performance over other efficient SR methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A lightweight network with bidirectional constraints for single image super-resolution
    Chen, Liangliang
    Guo, Lin
    Cheng, Deqiang
    Kou, Qiqi
    Gao, Rui
    OPTIK, 2021, 239
  • [42] Lightweight Feature Fusion Network for Single Image Super-Resolution
    Yang, Wenming
    Wang, Wei
    Zhang, Xuechen
    Sun, Shuifa
    Liao, Qingmin
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 538 - 542
  • [43] Lightweight image super-resolution with multiscale residual attention network
    Xiao, Cunjun
    Dong, Hui
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [44] Disentangled feature fusion network for lightweight image super-resolution
    Liu, Huilin
    Zhou, Jianyu
    Su, Shuzhi
    Yang, Gaoming
    Zhang, Pengfei
    DIGITAL SIGNAL PROCESSING, 2024, 154
  • [45] Lightweight image super-resolution with sliding Proxy Attention Network
    Hu, Zhenyu
    Sun, Wanjie
    Chen, Zhenzhong
    SIGNAL PROCESSING, 2025, 227
  • [46] Lightweight adaptive enhanced attention network for image super-resolution
    Li Wang
    Lizhong Xu
    Jianqiang Shi
    Jie Shen
    Fengcheng Huang
    Multimedia Tools and Applications, 2022, 81 : 6513 - 6537
  • [47] Spatial and Channel Aggregation Network for Lightweight Image Super-Resolution
    Wu, Xianyu
    Zuo, Linze
    Huang, Feng
    SENSORS, 2023, 23 (19)
  • [48] Lightweight adaptive weighted network for single image super-resolution
    Li, Zheng
    Wang, Chaofeng
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 211
  • [49] A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution
    Fang, Jinsheng
    Lin, Hanjiang
    Chen, Xinyu
    Zeng, Kun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1102 - 1111
  • [50] Lightweight image super-resolution with the adaptive weight learning network
    Zhang Y.
    Cheng P.
    Zhang S.
    Wang X.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2021, 48 (05): : 15 - 22