Partial convolutional reparameterization network for lightweight image super-resolution

被引:1
|
作者
Zhang, Long [1 ]
Wan, Yi [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, 222 S Tianshui Rd, Lanzhou 730000, Peoples R China
关键词
Single image super-resolution; Lightweight super-resolution network; Partial convolutional reparameterization network; Attention module;
D O I
10.1007/s11554-024-01565-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, convolutional neural networks (CNNs) have made significant strides in single image super-resolution (SISR). However, redundancy persists in network models concerning both channels and network structures, constituting a challenge in designing lightweight super-resolution (SR) networks. Consequently, finding a balance between efficiency and performance has emerged as the focus in SR research. In response to these challenges, we propose the Partial Convolutional Reparameterization Network (PCRN) for lightweight SR. Specifically, we initially employ partial convolution to reduce channel redundancy. Subsequently, we employ a complex network structure during model training, while in the inference stage, we utilize reparameterization techniques to compress the model, thus reducing redundancy in the network structure. Moreover, we have introduced enhanced spatial attention (ESA) and efficient channel attention (ECA) modules into our approach to enhance the model's capability to extract key information. In comparative experiments, the proposed PCRN demonstrates superior performance over other efficient SR methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Deformable and residual convolutional network for image super-resolution
    Zhang, Yan
    Sun, Yemei
    Liu, Shudong
    APPLIED INTELLIGENCE, 2022, 52 (01) : 295 - 304
  • [32] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [33] Image Super-Resolution Based on Dense Convolutional Network
    Li, Jie
    Zhou, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PT II, 2018, 11257 : 134 - 145
  • [34] Pixel attention convolutional network for image super-resolution
    Xin Wang
    Shufen Zhang
    Yuanyuan Lin
    Yanxia Lyu
    Jiale Zhang
    Neural Computing and Applications, 2023, 35 : 8589 - 8599
  • [35] Deformable and residual convolutional network for image super-resolution
    Yan Zhang
    Yemei Sun
    Shudong Liu
    Applied Intelligence, 2022, 52 : 295 - 304
  • [36] Densely convolutional attention network for image super-resolution
    Bai, Furui
    Lu, Wen
    Huang, Yuanfei
    Zha, Lin
    Yang, Jiachen
    NEUROCOMPUTING, 2019, 368 : 25 - 33
  • [37] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199
  • [38] Convolutional Neural Network for Smoke Image Super-Resolution
    Liu, Maoshen
    Gu, Ke
    Qiao, Junfei
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [39] Lightweight image super-resolution network using 3D convolutional neural networks
    Li, Hailong
    Liu, Zhonghua
    Liu, Yong
    Wu, Di
    Zhang, Kaibing
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (01)
  • [40] LCCN: A Lightweight Capture Context Network for Image Super-Resolution
    Wen, Changchun
    Liang, Hu
    Zhao, Shengrong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,