Deep models for multi-view 3D object recognition: a review

被引:0
|
作者
Alzahrani, Mona [1 ,2 ]
Usman, Muhammad [1 ,3 ,5 ]
Jarraya, Salma Kammoun [4 ]
Anwar, Saeed [1 ,3 ]
Helmy, Tarek [1 ,5 ]
机构
[1] KFUPM, Dept Informat & Comp Sci, Dhahran, Saudi Arabia
[2] Jouf Univ, Coll Comp & Informat Sci, Sakaka, Saudi Arabia
[3] KFUPM, SDAIA KFUPM Joint Res Ctr Artificial Intelligence, Dhahran, Saudi Arabia
[4] KAU, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
[5] KFUPM, Ctr Intelligent Secure Syst, Dhahran, Saudi Arabia
关键词
3D object recognition; Multi-view object recognition; Multi-view conventional neural network; 3D object classification; 3D object retrieval; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; CONTACTLESS; IMAGES;
D O I
10.1007/s10462-024-10941-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This review paper focuses on the progress of deep learning-based methods for multi-view 3D object recognition. It covers the state-of-the-art techniques in this field, specifically those that utilize 3D multi-view data as input representation. The paper provides a comprehensive analysis of the pipeline for deep learning-based multi-view 3D object recognition, including the various techniques employed at each stage. It also presents the latest developments in CNN-based and transformer-based models for multi-view 3D object recognition. The review discusses existing models in detail, including the datasets, camera configurations, view selection strategies, pre-trained CNN architectures, fusion strategies, and recognition performance. Additionally, it examines various computer vision applications that use multi-view classification. Finally, it highlights future directions, factors impacting recognition performance, and trends for the development of multi-view 3D object recognition method.
引用
收藏
页数:71
相关论文
共 50 条
  • [41] Volumetric and Multi-View CNNs for Object Classification on 3D Data
    Qi, Charles R.
    Su, Hao
    Niessner, Matthias
    Dai, Angela
    Yan, Mengyuan
    Guibas, Leonidas J.
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5648 - 5656
  • [42] Multi-View 3D Object Detection Network for Autonomous Driving
    Chen, Xiaozhi
    Ma, Huimin
    Wan, Ji
    Li, Bo
    Xia, Tian
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6526 - 6534
  • [43] Multi-view and multivariate gaussian descriptor for 3D object retrieval
    Zan Gao
    Kai-Xin Xue
    Hua Zhang
    Multimedia Tools and Applications, 2019, 78 : 555 - 572
  • [44] 3D Object Localisation from Multi-View Image Detections
    Rubino, Cosimo
    Crocco, Marco
    Del Bue, Alessio
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (06) : 1281 - 1294
  • [45] Multi-view and multivariate gaussian descriptor for 3D object retrieval
    Gao, Zan
    Xue, Kai-Xin
    Zhang, Hua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (01) : 555 - 572
  • [46] Multi-View Object Class Detection with a 3D Geometric Model
    Liebelt, Joerg
    Schmid, Cordelia
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1688 - 1695
  • [47] Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition
    Zeng, Hui
    Zhao, Tianmeng
    Cheng, Ruting
    Wang, Fuzhou
    Liu, Jiwei
    IEEE ACCESS, 2021, 9 (09): : 33323 - 33335
  • [48] MapReduce for Multi-view Object Recognition
    Noor, Shaheena
    Uddin, Vali
    2016 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS 2016), 2016, : 575 - 582
  • [49] CAPE: Camera View Position Embedding for Multi-View 3D Object Detection
    Xiong, Kaixin
    Gong, Shi
    Ye, Xiaoqing
    Tan, Xiao
    Wan, Ji
    Ding, Errui
    Wang, Jingdong
    Bai, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21570 - 21579
  • [50] A review and comparison of multi-view 3D reconstruction methods
    Jadhav, Tushar
    Singh, Kulbir
    Abhyankar, Aditya
    JOURNAL OF ENGINEERING RESEARCH, 2017, 5 (03): : 50 - 72