Deep models for multi-view 3D object recognition: a review

被引:0
|
作者
Alzahrani, Mona [1 ,2 ]
Usman, Muhammad [1 ,3 ,5 ]
Jarraya, Salma Kammoun [4 ]
Anwar, Saeed [1 ,3 ]
Helmy, Tarek [1 ,5 ]
机构
[1] KFUPM, Dept Informat & Comp Sci, Dhahran, Saudi Arabia
[2] Jouf Univ, Coll Comp & Informat Sci, Sakaka, Saudi Arabia
[3] KFUPM, SDAIA KFUPM Joint Res Ctr Artificial Intelligence, Dhahran, Saudi Arabia
[4] KAU, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
[5] KFUPM, Ctr Intelligent Secure Syst, Dhahran, Saudi Arabia
关键词
3D object recognition; Multi-view object recognition; Multi-view conventional neural network; 3D object classification; 3D object retrieval; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; CONTACTLESS; IMAGES;
D O I
10.1007/s10462-024-10941-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This review paper focuses on the progress of deep learning-based methods for multi-view 3D object recognition. It covers the state-of-the-art techniques in this field, specifically those that utilize 3D multi-view data as input representation. The paper provides a comprehensive analysis of the pipeline for deep learning-based multi-view 3D object recognition, including the various techniques employed at each stage. It also presents the latest developments in CNN-based and transformer-based models for multi-view 3D object recognition. The review discusses existing models in detail, including the datasets, camera configurations, view selection strategies, pre-trained CNN architectures, fusion strategies, and recognition performance. Additionally, it examines various computer vision applications that use multi-view classification. Finally, it highlights future directions, factors impacting recognition performance, and trends for the development of multi-view 3D object recognition method.
引用
收藏
页数:71
相关论文
共 50 条
  • [31] Multi-View and 3D Deformable Part Models
    Pepik, Bojan
    Stark, Michael
    Gehler, Peter
    Schiele, Bernt
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (11) : 2232 - 2245
  • [32] Multi-view representation and synthesis for 3D object movie
    Lie, WN
    Wei, BE
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 529 - 532
  • [33] Viewpoint Equivariance for Multi-View 3D Object Detection
    Chen, Dian
    Li, Jie
    Guizilini, Vitor
    Ambrus, Rares
    Gaidon, Adrien
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9213 - 9222
  • [34] Contactless and partial 3D fingerprint recognition using multi-view deep representation
    Lin, Chenhao
    Kumar, Ajay
    PATTERN RECOGNITION, 2018, 83 : 314 - 327
  • [35] Drcnn: Dynamic routing convolutional neural network for multi-view 3d object recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE Transactions on Image Processing, 2021, 30 : 868 - 877
  • [36] DRCNN: Dynamic Routing Convolutional Neural Network for Multi-View 3D Object Recognition
    Sun, Kai
    Zhang, Jiangshe
    Liu, Junmin
    Yu, Ruixuan
    Song, Zengjie
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 868 - 877
  • [37] Object-based encoding for multi-view sequences of 3D object
    Yi, J
    Rhee, K
    Kim, S
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2002, 17 (03) : 293 - 304
  • [38] Comparative Study of Multi-View 3D Object Retrieval with Autoencoder & Deep Embedding Network
    Aktar, Sakifa
    Al Mamun, Md
    Hossain, Md Ali
    2018 21ST INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2018,
  • [39] Multi-view Manhole Detection, Recognition, and 3D Localisation
    Timofte, Radu
    Van Gool, Luc
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [40] Multi-View 3D Shape Recognition via Correspondence-Aware Deep Learning
    Xu, Yong
    Zheng, Chaoda
    Xu, Ruotao
    Quan, Yuhui
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 5299 - 5312