Deep models for multi-view 3D object recognition: a review

被引:0
|
作者
Alzahrani, Mona [1 ,2 ]
Usman, Muhammad [1 ,3 ,5 ]
Jarraya, Salma Kammoun [4 ]
Anwar, Saeed [1 ,3 ]
Helmy, Tarek [1 ,5 ]
机构
[1] KFUPM, Dept Informat & Comp Sci, Dhahran, Saudi Arabia
[2] Jouf Univ, Coll Comp & Informat Sci, Sakaka, Saudi Arabia
[3] KFUPM, SDAIA KFUPM Joint Res Ctr Artificial Intelligence, Dhahran, Saudi Arabia
[4] KAU, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
[5] KFUPM, Ctr Intelligent Secure Syst, Dhahran, Saudi Arabia
关键词
3D object recognition; Multi-view object recognition; Multi-view conventional neural network; 3D object classification; 3D object retrieval; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; CONTACTLESS; IMAGES;
D O I
10.1007/s10462-024-10941-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This review paper focuses on the progress of deep learning-based methods for multi-view 3D object recognition. It covers the state-of-the-art techniques in this field, specifically those that utilize 3D multi-view data as input representation. The paper provides a comprehensive analysis of the pipeline for deep learning-based multi-view 3D object recognition, including the various techniques employed at each stage. It also presents the latest developments in CNN-based and transformer-based models for multi-view 3D object recognition. The review discusses existing models in detail, including the datasets, camera configurations, view selection strategies, pre-trained CNN architectures, fusion strategies, and recognition performance. Additionally, it examines various computer vision applications that use multi-view classification. Finally, it highlights future directions, factors impacting recognition performance, and trends for the development of multi-view 3D object recognition method.
引用
收藏
页数:71
相关论文
共 50 条
  • [1] Review of multi-view 3D object recognition methods based on deep learning
    Qi, Shaohua
    Ning, Xin
    Yang, Guowei
    Zhang, Liping
    Long, Peng
    Cai, Weiwei
    Li, Weijun
    DISPLAYS, 2021, 69
  • [2] Learning Relationships for Multi-View 3D Object Recognition
    Yang, Ze
    Wang, Liwei
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7504 - 7513
  • [3] 3D LayoutCRF for multi-view object class recognition and segmentation
    Hoiem, Derek
    Rother, Carsten
    Winn, John
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 580 - +
  • [4] Learning Disentangled Representation for Multi-View 3D Object Recognition
    Huang, Jingjia
    Yan, Wei
    Li, Ge
    Li, Thomas
    Liu, Shan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 646 - 659
  • [5] Multi-view convolutional vision transformer for 3D object recognition
    Li, Jie
    Liu, Zhao
    Li, Li
    Lin, Junqin
    Yao, Jian
    Tu, Jingmin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [6] MVContrast: Unsupervised Pretraining for Multi-view 3D Object Recognition
    Wang, Luequan
    Xu, Hongbin
    Kang, Wenxiong
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (06) : 872 - 883
  • [7] Multi-view ensemble manifold regularization for 3D object recognition
    Hong, Chaoqun
    Yu, Jun
    You, Jane
    Chen, Xuhui
    Tao, Dapeng
    INFORMATION SCIENCES, 2015, 320 : 395 - 405
  • [8] MVContrast: Unsupervised Pretraining for Multi-view 3D Object Recognition
    Luequan Wang
    Hongbin Xu
    Wenxiong Kang
    Machine Intelligence Research, 2023, 20 : 872 - 883
  • [9] Multi-view dual attention network for 3D object recognition
    Wenju Wang
    Yu Cai
    Tao Wang
    Neural Computing and Applications, 2022, 34 : 3201 - 3212
  • [10] Multi-view dual attention network for 3D object recognition
    Wang, Wenju
    Cai, Yu
    Wang, Tao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 3201 - 3212