PerFedRec plus plus : Enhancing Personalized Federated Recommendation with Self-Supervised Pre-Training

被引:1
|
作者
Luo, Sichun [1 ,2 ]
Xiao, Yuanzhang [3 ]
Zhang, Xinyi [4 ]
Liu, Yang [5 ]
Ding, Wenbo [6 ,7 ]
Song, Linqi [1 ,2 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
[3] Univ Hawaii Manoa, Hawaii Adv Wireless Technol Inst, Honolulu, HI USA
[4] Capital Univ Econ & Business, Dept Accounting, Beijing, Peoples R China
[5] Tsinghua Univ, Inst AI Ind Res, Beijing, Peoples R China
[6] Tsinghua Shenzhen Int Grad Sch, Inst Data & Informat, Shenzhen, Peoples R China
[7] Tsinghua Univ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; self-supervised learning; personalization; MATRIX FACTORIZATION; NEURAL-NETWORKS;
D O I
10.1145/3664927
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated recommendation systems employ federated learning techniques to safeguard user privacy by transmitting model parameters instead of raw user data between user devices and the central server. Nevertheless, the current federated recommender system faces three significant challenges: (1) data heterogeneity: the heterogeneity of users' attributes and local data necessitates the acquisition of personalized models to improve the performance of federated recommendation; (2) model performance degradation: the privacy-preserving protocol design in the federated recommendation, such as pseudo item labeling and differential privacy, would deteriorate the model performance; (3) communication bottleneck: the standard federated recommendation algorithm can have a high communication overhead. Previous studies have attempted to address these issues, but none have been able to solve them simultaneously. In this article, we propose a novel framework, named PerFedRec++, to enhance the personalized federated recommendation with self-supervised pre-training. Specifically, we utilize the privacy-preserving mechanism of federated recommender systems to generate two augmented graph views, which are used as contrastive tasks in self-supervised graph learning to pre-train the model. Pre-training enhances the performance of federated models by improving the uniformity of representation learning. Also, by providing a better initial state for federated training, pre-training makes the overall training converge faster, thus alleviating the heavy communication burden. We then construct a collaborative graph to learn the client representation through a federated graph neural network. Based on these learned representations, we cluster users into different user groups and learn personalized models for each cluster. Each user learns a personalized model by combining the global federated model, the cluster-level federated model, and its own fine-tuned local model. Experiments on three real-world datasets show that our proposed method achieves superior performance over existing methods.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Token Boosting for Robust Self-Supervised Visual Transformer Pre-training
    Li, Tianjiao
    Foo, Lin Geng
    Hu, Ping
    Shang, Xindi
    Rahmani, Hossein
    Yuan, Zehuan
    Liu, Jun
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 24027 - 24038
  • [32] Joint Encoder-Decoder Self-Supervised Pre-training for ASR
    Arunkumar, A.
    Umesh, S.
    INTERSPEECH 2022, 2022, : 3418 - 3422
  • [33] Individualized Stress Mobile Sensing Using Self-Supervised Pre-Training
    Islam, Tanvir
    Washington, Peter
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [34] Stabilizing Label Assignment for Speech Separation by Self-supervised Pre-training
    Huang, Sung-Feng
    Chuang, Shun-Po
    Liu, Da-Rong
    Chen, Yi-Chen
    Yang, Gene-Ping
    Lee, Hung-yi
    INTERSPEECH 2021, 2021, : 3056 - 3060
  • [35] Self-Supervised Pre-training for Protein Embeddings Using Tertiary Structures
    Guo, Yuzhi
    Wu, Jiaxiang
    Ma, Hehuan
    Huang, Junzhou
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6801 - 6809
  • [36] DialogueBERT: A Self-Supervised Learning based Dialogue Pre-training Encoder
    Zhang, Zhenyu
    Guo, Tao
    Chen, Meng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3647 - 3651
  • [37] Progressive self-supervised learning: A pre-training method for crowd counting
    Gu, Yao
    Zheng, Zhe
    Wu, Yingna
    Xie, Guangping
    Ni, Na
    PATTERN RECOGNITION LETTERS, 2025, 188 : 148 - 154
  • [38] SslTransT: Self-supervised pre-training visual object tracking with Transformers
    Cai, Yannan
    Tan, Ke
    Wei, Zhenzhong
    OPTICS COMMUNICATIONS, 2024, 557
  • [39] GUIDED CONTRASTIVE SELF-SUPERVISED PRE-TRAINING FOR AUTOMATIC SPEECH RECOGNITION
    Khare, Aparna
    Wu, Minhua
    Bhati, Saurabhchand
    Droppo, Jasha
    Maas, Roland
    2022 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP, SLT, 2022, : 174 - 181
  • [40] Class incremental learning with self-supervised pre-training and prototype learning
    Liu, Wenzhuo
    Wu, Xin-Jian
    Zhu, Fei
    Yu, Ming-Ming
    Wang, Chuang
    Liu, Cheng-Lin
    PATTERN RECOGNITION, 2025, 157