Individualized Stress Mobile Sensing Using Self-Supervised Pre-Training

被引:5
|
作者
Islam, Tanvir [1 ]
Washington, Peter [1 ]
机构
[1] Univ Hawaii Manoa, Informat & Comp Sci, Honolulu, HI 96822 USA
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 21期
基金
美国国家卫生研究院;
关键词
mobile sensing; affective computing; personalized machine learning; self-supervised learning; biosignals; stress prediction; PSYCHOLOGICAL STRESS;
D O I
10.3390/app132112035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stress is widely recognized as a major contributor to a variety of health issues. Stress prediction using biosignal data recorded by wearables is a key area of study in mobile sensing research because real-time stress prediction can enable digital interventions to immediately react at the onset of stress, helping to avoid many psychological and physiological symptoms such as heart rhythm irregularities. Electrodermal activity (EDA) is often used to measure stress. However, major challenges with the prediction of stress using machine learning include the subjectivity and sparseness of the labels, a large feature space, relatively few labels, and a complex nonlinear and subjective relationship between the features and outcomes. To tackle these issues, we examined the use of model personalization: training a separate stress prediction model for each user. To allow the neural network to learn the temporal dynamics of each individual's baseline biosignal patterns, thus enabling personalization with very few labels, we pre-trained a one-dimensional convolutional neural network (1D CNN) using self-supervised learning (SSL). We evaluated our method using the Wearable Stress and Affect Detection(WESAD) dataset. We fine-tuned the pre-trained networks to the stress-prediction task and compared against equivalent models without any self-supervised pre-training. We discovered that embeddings learned using our pre-training method outperformed the supervised baselines with significantly fewer labeled data points: the models trained with SSL required less than 30% of the labels to reach equivalent performance without personalized SSL. This personalized learning method can enable precision health systems that are tailored to each subject and require few annotations by the end user, thus allowing for the mobile sensing of increasingly complex, heterogeneous, and subjective outcomes such as stress.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [2] Self-supervised Pre-training of Text Recognizers
    Kiss, Martin
    Hradis, Michal
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT IV, 2024, 14807 : 218 - 235
  • [3] Self-supervised Pre-training for Mirror Detection
    Lin, Jiaying
    Lau, Rynson W. H.
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12193 - 12202
  • [4] Self-supervised Pre-training for Nuclei Segmentation
    Haq, Mohammad Minhazul
    Huang, Junzhou
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 303 - 313
  • [5] EFFECTIVENESS OF SELF-SUPERVISED PRE-TRAINING FOR ASR
    Baevski, Alexei
    Mohamed, Abdelrahman
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7694 - 7698
  • [6] FALL DETECTION USING SELF-SUPERVISED PRE-TRAINING MODEL
    Yhdego, Haben
    Audette, Michel
    Paolini, Christopher
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 361 - 371
  • [7] Barlow twin self-supervised pre-training for remote sensing change detection
    Feng, Wenqing
    Tu, Jihui
    Sun, Chenhao
    Xu, Wei
    REMOTE SENSING LETTERS, 2023, 14 (10) : 1087 - 1099
  • [8] Self-Supervised Pre-training for Protein Embeddings Using Tertiary Structures
    Guo, Yuzhi
    Wu, Jiaxiang
    Ma, Hehuan
    Huang, Junzhou
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6801 - 6809
  • [9] Self-Supervised Pre-training for Time Series Classification
    Shi, Pengxiang
    Ye, Wenwen
    Qin, Zheng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] RobustEmbed: Robust Sentence Embeddings Using Self-Supervised Contrastive Pre-Training
    Asl, Javad Rafiei
    Blanco, Eduardo
    Takabi, Daniel
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS - EMNLP 2023, 2023, : 4587 - 4603