Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system?

被引:0
|
作者
Department of Mathematics, University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada [1 ]
机构
来源
SIAM J. Math. Anal. | 1600年 / 6卷 / 2207-2225期
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A system of schrödinger equations in the critical case
    Puriuškis G.
    Lithuanian Mathematical Journal, 2001, 41 (1) : 65 - 71
  • [22] Bound states for a coupled Schrödinger system
    Thomas Bartsch
    Zhi-Qiang Wang
    Juncheng Wei
    Journal of Fixed Point Theory and Applications, 2007, 2 : 353 - 367
  • [23] On a Schrödinger system with shrinking regions of attraction
    Clapp, Monica
    Saldana, Alberto
    Szulkin, Andrzej
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):
  • [24] Structure of positive solutions to a Schrödinger system
    Zhitao Zhang
    Wei Wang
    Journal of Fixed Point Theory and Applications, 2017, 19 : 877 - 887
  • [25] On a Schrödinger system arizing in nonlinear optics
    Filipe Oliveira
    Ademir Pastor
    Analysis and Mathematical Physics, 2021, 11
  • [26] Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Selecta Mathematica, 2016, 22 : 1663 - 1702
  • [27] Hausdorff measure of critical sets of solutions to magnetic schrödinger equations
    Dan Liu
    Calculus of Variations and Partial Differential Equations, 2011, 41 : 179 - 202
  • [28] Continuity of the Measure of the Spectrum for Quasiperiodic Schrödinger Operators with Rough Potentials
    Svetlana Jitomirskaya
    Rajinder Mavi
    Communications in Mathematical Physics, 2014, 325 : 585 - 601
  • [29] Lifespan of strong solutions to the periodic nonlinear Schrödinger equation without gauge invariance
    Kazumasa Fujiwara
    Tohru Ozawa
    Journal of Evolution Equations, 2017, 17 : 1023 - 1030
  • [30] Scattering of solutions with group invariance for the fourth-order nonlinear Schrödinger equation
    Komada, Koichi
    Masaki, Satoshi
    NONLINEARITY, 2024, 37 (08)