Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation

被引:0
|
作者
Giuseppe Genovese
Renato Lucà
Daniele Valeri
机构
[1] Universität Zürich,Institut für Mathematik
[2] CSIC,Instituto de Ciencias Matemáticas
[3] Tsinghua University,Yau Mathematical Sciences Center
来源
Selecta Mathematica | 2016年 / 22卷
关键词
Gibbs measures; DNLS; Integrable systems; 35Q30; 35BXX; 37K05; 37L50; 35Q55; 37K10; 37K30; 17B69; 17B80;
D O I
暂无
中图分类号
学科分类号
摘要
We study the one-dimensional periodic derivative nonlinear Schrödinger equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion ∫hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textstyle \int }h_k$$\end{document}, k∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {Z}}_{+}$$\end{document}. In each ∫h2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textstyle \int }h_{2k}$$\end{document} the term with the highest regularity involves the Sobolev norm H˙k(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{k}({\mathbb {T}})$$\end{document} of the solution of the DNLS equation. We show that a functional measure on L2(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {T}})$$\end{document}, absolutely continuous w.r.t. the Gaussian measure with covariance (I+(-Δ)k)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {I}}+(-\varDelta )^{k})^{-1}$$\end{document}, is associated to each integral of motion ∫h2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textstyle \int }h_{2k}$$\end{document}, k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}.
引用
收藏
页码:1663 / 1702
页数:39
相关论文
共 50 条
  • [1] Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1663 - 1702
  • [2] Invariant measures for the periodic derivative nonlinear Schrödinger equation
    Giuseppe Genovese
    Renato Lucà
    Daniele Valeri
    Mathematische Annalen, 2019, 374 : 1075 - 1138
  • [3] Hasimoto frames and the Gibbs measure of the periodic nonlinear Schrödinger equation
    Blower, Gordon
    Khaleghi, Azadeh
    Kuchemann-Scales, Moe
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (02)
  • [4] Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation
    Bradley Isom
    Dionyssios Mantzavinos
    Atanas Stefanov
    Mathematische Annalen, 2024, 388 : 2289 - 2329
  • [5] Periodic wave solutions of generalized derivative nonlinear Schrödinger equation
    Department of Computer Science, East China Normal University, Shanghai 200062, China
    不详
    Chin. Phys. Lett., 2008, 11 (3844-3847):
  • [6] On a nonlinear Schrödinger equation with periodic potential
    Thomas Bartsch
    Yanheng Ding
    Mathematische Annalen, 1999, 313 : 15 - 37
  • [7] Space Periodic Solutions and Rogue Wave Solution of the Derivative Nonlinear Schr?dinger Equation
    ZHOU Guoquan
    LI Xujun
    WuhanUniversityJournalofNaturalSciences, 2017, 22 (05) : 373 - 379
  • [8] Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation
    Yu Deng
    Andrea R. Nahmod
    Haitian Yue
    Communications in Mathematical Physics, 2021, 384 : 1061 - 1107
  • [9] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [10] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967