Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation

被引:0
|
作者
Giuseppe Genovese
Renato Lucà
Daniele Valeri
机构
[1] Universität Zürich,Institut für Mathematik
[2] CSIC,Instituto de Ciencias Matemáticas
[3] Tsinghua University,Yau Mathematical Sciences Center
来源
Selecta Mathematica | 2016年 / 22卷
关键词
Gibbs measures; DNLS; Integrable systems; 35Q30; 35BXX; 37K05; 37L50; 35Q55; 37K10; 37K30; 17B69; 17B80;
D O I
暂无
中图分类号
学科分类号
摘要
We study the one-dimensional periodic derivative nonlinear Schrödinger equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion ∫hk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textstyle \int }h_k$$\end{document}, k∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in {\mathbb {Z}}_{+}$$\end{document}. In each ∫h2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textstyle \int }h_{2k}$$\end{document} the term with the highest regularity involves the Sobolev norm H˙k(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{k}({\mathbb {T}})$$\end{document} of the solution of the DNLS equation. We show that a functional measure on L2(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {T}})$$\end{document}, absolutely continuous w.r.t. the Gaussian measure with covariance (I+(-Δ)k)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {I}}+(-\varDelta )^{k})^{-1}$$\end{document}, is associated to each integral of motion ∫h2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textstyle \int }h_{2k}$$\end{document}, k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}.
引用
收藏
页码:1663 / 1702
页数:39
相关论文
共 50 条