Multidimensional Wavelet Bases in Diffusion Theory

被引:0
|
作者
Laserra, E. [1 ]
机构
[1] Dipartimento di Matematica, Univ. di Salerno, Via S. Allende, I-84081 Baronissi (SA), Italy
关键词
D O I
10.1615/interjfluidmechres.v29.i6.30
中图分类号
学科分类号
摘要
Diffusion
引用
收藏
页码:690 / 695
相关论文
共 50 条
  • [41] Multiresolution wavelet bases with augmentation method for solving singularly perturbed reaction-diffusion Neumann problem
    Utudee, Somlak
    Maleewong, Montri
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (01)
  • [42] Angular channels in a multidimensional wavelet transform
    Clarkson, E
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (01) : 80 - 102
  • [43] WAVELET BASES IN L(P)(R)
    GRIPENBERG, G
    STUDIA MATHEMATICA, 1993, 106 (02) : 175 - 187
  • [44] Construction of fractional spline wavelet bases
    Unser, M
    Blu, T
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 422 - 431
  • [45] New Generalization of Orthogonal Wavelet Bases
    Pleshcheva, E. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 273 : S124 - S132
  • [46] Wavelet bases in Lorentz and Zygmund spaces
    Triebel, Hans
    GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (02) : 389 - 402
  • [47] Log-domain Wavelet bases
    Haddad, SAP
    Bagga, S
    Serdijn, WA
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2004, : 1100 - 1103
  • [48] A new family of orthonormal wavelet bases
    Liu, LT
    Hsu, HT
    Gao, BX
    JOURNAL OF GEODESY, 1998, 72 (05) : 294 - 303
  • [49] Wavelet Bases for Confinements of the Infrared Divergence
    Vedel, Beatrice
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (01) : 101 - 123
  • [50] Unconditional wavelet bases in Lebesgue spaces
    Zhang, Yan
    Li, Yun-Zhang
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (01) : 83 - 107