Multidimensional Wavelet Bases in Diffusion Theory

被引:0
|
作者
Laserra, E. [1 ]
机构
[1] Dipartimento di Matematica, Univ. di Salerno, Via S. Allende, I-84081 Baronissi (SA), Italy
关键词
D O I
10.1615/interjfluidmechres.v29.i6.30
中图分类号
学科分类号
摘要
Diffusion
引用
收藏
页码:690 / 695
相关论文
共 50 条
  • [21] Multiresolution multidimensional wavelet brushing
    Wong, PC
    Bergeron, RD
    VISUALIZATION '96, PROCEEDINGS, 1996, : 141 - +
  • [22] Multidimensional wavelet analysis of seismicity
    Lyubushin, AA
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2000, 36 (08) : 686 - 696
  • [23] WAVELET BASES FOR THE BIHARMONIC PROBLEM
    Bimova, Daniela
    Cerna, Dana
    Finek, Vaclav
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 16, 2013, : 15 - 20
  • [24] Wavelet bases on adele rings
    Kosyak, A. V.
    Khrennikov, A. Yu
    Shelkovich, V. M.
    DOKLADY MATHEMATICS, 2012, 85 (01) : 75 - 79
  • [25] WAVELET BASES FOR A UNITARY OPERATOR
    LEE, SL
    TAN, HH
    TANG, WS
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 : 233 - 260
  • [26] On biorthogonal discrete wavelet bases
    Farkov, Yu. A.
    Rodionov, E. A.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (01)
  • [27] Wavelet bases on adele rings
    A. V. Kosyak
    A. Yu. Khrennikov
    V. M. Shelkovich
    Doklady Mathematics, 2012, 85 : 75 - 79
  • [28] Anisotropic wavelet bases and thresholding
    Hochmuth, Reinhard
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (5-6) : 523 - 533
  • [29] Grobner bases and wavelet design
    Lebrun, J
    Selesnick, I
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (02) : 227 - 259
  • [30] The shiftability of some wavelet bases
    Wang, Q
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 40 (8-9) : 957 - 964