Design of tangent vector fields

被引:0
|
作者
Caltech [1 ]
不详 [2 ]
机构
来源
ACM Trans Graphics | 2007年 / 3卷
关键词
Constraint theory - Edge detection - Image analysis - Least squares approximations;
D O I
10.1145/1276377.1276447
中图分类号
学科分类号
摘要
Tangent vector fields are an essential ingredient in controlling surface appearance for applications ranging from anisotropic shading to texture synthesis and non-photorealistic rendering. To achieve a desired effect one is typically interested in smoothly varying fields that satisfy a sparse set of user-provided constraints. Using tools from Discrete Exterior Calculus, we present a simple and efficient algorithm for designing such fields over arbitrary triangle meshes. By representing the field as scalars over mesh edges (i.e., discrete 1-forms), we obtain an intrinsic, coordinate-free formulation in which field smoothness is enforced through discrete Laplace operators. Unlike previous methods, such a formulation leads to a linear system whose sparsity permits efficient pre-factorization. Constraints are incorporated through weighted least squares and can be updated rapidly enough to enable interactive design, as we demonstrate in the context of anisotropic texture synthesis. © 2007 ACM.
引用
收藏
相关论文
共 50 条
  • [41] TANGENT UNIT-VECTOR FIELDS: NONABELIAN HOMOTOPY INVARIANTS AND THE DIRICHLET ENERGY
    Majumdar, A.
    Robbins, J. M.
    Zyskin, M.
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1357 - 1399
  • [42] Classification of unit-vector fields in convex polyhedra with tangent boundary conditions
    Robbins, JM
    Zyskin, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (44): : 10609 - 10623
  • [43] SOME VECTOR FIELDS ON THE TANGENT BUNDLE WITH A SEMI-SYMMETRIC METRIC CONNECTION
    Gezer, Aydin
    Karakas, Erkan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 669 - 683
  • [44] Tangent unit-vector fields: Nonabelian homotopy invariants and the Dirichlet energy
    Majumdar, Apala
    Robbins, J. M.
    Zyskin, Maxim
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) : 1159 - 1164
  • [45] Creation of Limit Cycles in Piecewise Smooth Vector Fields Tangent to Nested Tori
    Tiago Carvalho
    Luiz Fernando Gonçalves
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [46] Differential Equations in a Tangent Category I: Complete Vector Fields, Flows, and Exponentials
    Cockett, J. R. B.
    Cruttwell, G. S. H.
    Lemay, J. -S. P.
    APPLIED CATEGORICAL STRUCTURES, 2021, 29 (05) : 773 - 825
  • [47] Dynamic equivalence in tangent spaces from vector fields of chemical reaction networks
    Mendez, J. M.
    Femat, R.
    CHEMICAL ENGINEERING SCIENCE, 2012, 83 : 50 - 55
  • [48] BIFURCATIONS OF CODIMENSION ONE SINGULARITIES OF TANGENT VECTOR-FIELDS ON WHITNEY UMBRELLA
    BILLEKE, J
    WALLACE, M
    LECTURE NOTES IN MATHEMATICS, 1988, 1331 : 1 - 11
  • [49] Differential Equations in a Tangent Category I: Complete Vector Fields, Flows, and Exponentials
    J. R. B. Cockett
    G. S. H. Cruttwell
    J. -S. P. Lemay
    Applied Categorical Structures, 2021, 29 : 773 - 825
  • [50] Creation of Limit Cycles in Piecewise Smooth Vector Fields Tangent to Nested Tori
    Carvalho, Tiago
    Goncalves, Luiz Fernando
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)