Tangent unit-vector fields: Nonabelian homotopy invariants and the Dirichlet energy

被引:2
|
作者
Majumdar, Apala [1 ]
Robbins, J. M. [2 ]
Zyskin, Maxim [3 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Dept Math, Brownsville, TX 78520 USA
关键词
CONVEX POLYHEDRA; LIQUID-CRYSTALS; ELASTIC ENERGY;
D O I
10.1016/j.crma.2009.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O be a closed geodesic polygon in S(2). Maps from O into S(2) are said to satisfy tangent boundary conditions if the edges of O are mapped into the geodesics which contain them. Taking O to be an octant of S(2), we evaluate the infimum Dirichlet energy, E(H), for continuous tangent maps of arbitrary homotopy type H. The expression for E(H) involves a topological invariant - the spelling length - associated with the (nonabelian) fundamental group of the n-times punctured two-sphere, pi(1) (S(2) - {s(1), ... , s(n)}, *). These results have applications for the theoretical modelling of nematic liquid crystal devices. To cite this article: A. Majumdar et al., C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1159 / 1164
页数:6
相关论文
共 32 条