Joint detection and localization of False Data Injection Attacks in smart grids: An enhanced state estimation approach

被引:1
|
作者
Zhang, Guoqing
Gao, Wengen [1 ]
Li, Yunfei
Liu, Yixuan
Guo, Xinxin
Jiang, Wenlong
机构
[1] Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyber security; False data injection attacks; Smart grid; Detection; Localization; State estimate;
D O I
10.1016/j.compeleceng.2024.109834
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The transition to smart grids introduces significant cybersecurity vulnerabilities, particularly with the rise of False Data Injection Attacks (FDIAs). These attacks allow malicious actors to manipulate sensor data, alter the internal state of the grid, and bypass traditional Bad Data Detection (BDD) systems. FDIAs pose a serious threat to grid security, potentially leading to incorrect state estimation and destabilization of the power system, which could result in system outages and economic losses. To address this challenge, this paper proposes a novel detection and localization method. First, false data and measurement errors are modeled as non-Gaussian noise. Recognizing the limitations of the traditional Extended Kalman Filter (EKF) under non- Gaussian conditions, the Maximum Correntropy Criterion (MCC) is integrated into the EKF to improve the robustness of state estimation. Additionally, the Maximum Correntropy Criterion Extended Kalman Filter (MCCEKF) is combined with Weighted Least Squares (WLS), and cosine similarity is introduced to quantify the differences between these two estimators for FDIA detection. A partition approach is then used to construct a logical localization matrix, with cosine similarity detection applied in each section to generate a detection matrix. By performing a logical AND operation on these matrices, the attacked bus is identified. Simulations on IEEE- 14-bus and IEEE-30-bus systems validate the proposed approach, demonstrating its effectiveness in reliably detecting and localizing FDIAs in smart grids.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] DAMGAT-Based Interpretable Detection of False Data Injection Attacks in Smart Grids
    Su, Xiangjing
    Deng, Chao
    Yang, Jiajia
    Li, Fengyong
    Li, Chaojie
    Fu, Yang
    Dong, Zhao Yang
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (04) : 4182 - 4195
  • [32] Detection of False Data Injection Attacks in Smart Grids Based on Graph Signal Processing
    Drayer, Elisabeth
    Routtenberg, Tirza
    IEEE SYSTEMS JOURNAL, 2020, 14 (02): : 1886 - 1896
  • [33] Data-driven Approach for State Prediction and Detection of False Data Injection Attacks in Smart Grid
    Reda, Haftu Tasew
    Anwar, Adnan
    Mahmood, Abdun
    Chilamkurti, Naveen
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2023, 11 (02) : 455 - 467
  • [34] Data-driven Approach for State Prediction and Detection of False Data Injection Attacks in Smart Grid
    Haftu Tasew Reda
    Adnan Anwar
    Abdun Mahmood
    Naveen Chilamkurti
    Journal of Modern Power Systems and Clean Energy, 2023, 11 (02) : 455 - 467
  • [35] Data-Driven False Data Injection Attacks on State Estimation in Smart Grid
    Li, Qinxue
    Cui, Delong
    Liu, Mei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 6190 - 6195
  • [36] Graph Autoencoder-Based Detection of Unseen False Data Injection Attacks in Smart Grids
    Takiddin, Abdulrahman
    Ismail, Muhammad
    Atat, Rachad
    Davis, Katherine R.
    Serpedin, Erchin
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2023, 2024, 822 : 234 - 244
  • [37] QUICKEST DETECTION OF TIME-VARYING FALSE DATA INJECTION ATTACKS IN DYNAMIC SMART GRIDS
    Zhang, Jiangfan
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2432 - 2436
  • [38] Comparison of deep learning algorithms for site detection of false data injection attacks in smart grids
    Nasir, Qassim
    Abu Talib, Manar
    Arshad, Muhammad Arbab
    Ishak, Tracy
    Berrim, Romaissa
    Alsaid, Basma
    Badway, Youssef
    Abu Waraga, Omnia
    Energy Informatics, 2024, 7 (01)
  • [39] Graph Neural Networks Based Detection of Stealth False Data Injection Attacks in Smart Grids
    Boyaci, Osman
    Umunnakwe, Amarachi
    Sahu, Abhijeet
    Narimani, Mohammad Rasoul
    Ismail, Muhammad
    Davis, Katherine R.
    Serpedin, Erchin
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 2946 - 2957
  • [40] Detection and Isolation of False Data Injection Attacks in Smart Grids via Nonlinear Interval Observer
    Wang, Xinyu
    Luo, Xiaoyuan
    Zhang, Yuyan
    Guan, Xinping
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (04): : 6498 - 6512