Joint detection and localization of False Data Injection Attacks in smart grids: An enhanced state estimation approach

被引:1
|
作者
Zhang, Guoqing
Gao, Wengen [1 ]
Li, Yunfei
Liu, Yixuan
Guo, Xinxin
Jiang, Wenlong
机构
[1] Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cyber security; False data injection attacks; Smart grid; Detection; Localization; State estimate;
D O I
10.1016/j.compeleceng.2024.109834
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The transition to smart grids introduces significant cybersecurity vulnerabilities, particularly with the rise of False Data Injection Attacks (FDIAs). These attacks allow malicious actors to manipulate sensor data, alter the internal state of the grid, and bypass traditional Bad Data Detection (BDD) systems. FDIAs pose a serious threat to grid security, potentially leading to incorrect state estimation and destabilization of the power system, which could result in system outages and economic losses. To address this challenge, this paper proposes a novel detection and localization method. First, false data and measurement errors are modeled as non-Gaussian noise. Recognizing the limitations of the traditional Extended Kalman Filter (EKF) under non- Gaussian conditions, the Maximum Correntropy Criterion (MCC) is integrated into the EKF to improve the robustness of state estimation. Additionally, the Maximum Correntropy Criterion Extended Kalman Filter (MCCEKF) is combined with Weighted Least Squares (WLS), and cosine similarity is introduced to quantify the differences between these two estimators for FDIA detection. A partition approach is then used to construct a logical localization matrix, with cosine similarity detection applied in each section to generate a detection matrix. By performing a logical AND operation on these matrices, the attacked bus is identified. Simulations on IEEE- 14-bus and IEEE-30-bus systems validate the proposed approach, demonstrating its effectiveness in reliably detecting and localizing FDIAs in smart grids.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Efficient Detection of False Data Injection Attacks on AC State Estimation in Smart Grids
    Kumar, James Ranjith R.
    Sikdar, Biplab
    2017 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2017, : 411 - 415
  • [2] Joint Detection and Localization of Stealth False Data Injection Attacks in Smart Grids Using Graph Neural Networks
    Boyaci, Osman
    Narimani, Mohammad Rasoul
    Davis, Katherine R.
    Ismail, Muhammad
    Overbye, Thomas J.
    Serpedin, Erchin
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (01) : 807 - 819
  • [3] False Data Injection Attacks Against Nonlinear State Estimation in Smart Power Grids
    Rahman, Md Ashfaqur
    Mohsenian-Rad, Hamed
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [4] False Data Injection Attacks against State Estimation in Smart Grids: Challenges and Opportunities
    Youssef, El-Nasser S.
    Labeau, Fabrice
    2018 IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2018,
  • [5] Detection of False Data Injection Attacks on Smart Grids: A Resilience-Enhanced Scheme
    Li, Beibei
    Lu, Rongxing
    Xiao, Gaoxi
    Li, Tao
    Choo, Kim-Kwang Raymond
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (04) : 2679 - 2692
  • [6] Extended Distributed State Estimation: A Detection Method against Tolerable False Data Injection Attacks in Smart Grids
    Wang, Dai
    Guan, Xiaohong
    Liu, Ting
    Gu, Yun
    Shen, Chao
    Xu, Zhanbo
    ENERGIES, 2014, 7 (03): : 1517 - 1538
  • [7] Detection of False Data Injection Attacks in Smart Grid Based on Joint Dynamic and Static State Estimation
    Hu, Pengfei
    Gao, Wengen
    Li, Yunfei
    Hua, Feng
    Qiao, Lina
    Zhang, Guoqing
    IEEE ACCESS, 2023, 11 : 45028 - 45038
  • [8] Detection of False Data Injection Attacks on Smart Grids Based on A-BiTG Approach
    He, Wei
    Liu, Weifeng
    Wen, Chenglin
    Yang, Qingqing
    ELECTRONICS, 2024, 13 (10)
  • [9] UKF-based State Estimation for Smart Grids Under False Data Injection Attacks
    Li, Jin
    Zhang, Youmin
    2022 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2022, : 374 - 379
  • [10] Detection of False Data Injection Attacks in Smart Grids Based on Forecasts
    Kallitsis, Michael G.
    Bhattacharya, Shrijita
    Michailidis, George
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,