Fourier regularization of an one dimensional non-standard inverse heat conduction problem

被引:0
|
作者
Qiu, Chun-Yu
Tao, Jian-Hong
Fu, Chu-Li
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] On the Cauchy problem of the standard linear solid model with Fourier heat conduction
    Pellicer, Marta
    Said-Houari, Belkacem
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [42] On the Cauchy problem of the standard linear solid model with Fourier heat conduction
    Marta Pellicer
    Belkacem Said-Houari
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [43] An inverse non-Fourier heat conduction problem approach for estimating the boundary condition in electronic device
    Hsu, PT
    Chu, YH
    APPLIED MATHEMATICAL MODELLING, 2004, 28 (07) : 639 - 652
  • [44] OPTIMIZATION OF REGULARIZATION IN INVERSE HEAT CONDUCTION ANALYSIS
    Woodbury, Keith A.
    Najafi, Hamid
    de Monte, Filippo
    8TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, 2023, : 479 - 489
  • [45] Regularization of backward heat conduction problem
    Rashidinia, Jalil
    Azarnavid, Babak
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) : 227 - 234
  • [46] Inverse modeling of a solar collector involving Fourier and non-Fourier heat conduction
    Bhowmik, Arka
    Singla, Rohit K.
    Das, Ranjan
    Mallick, A.
    Repaka, R.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5126 - 5148
  • [47] Heat conduction in one dimensional systems: Fourier law, chaos, and heat control
    Casati, G
    Li, BW
    NON-LINEAR DYNAMICS AND FUNDAMENTAL INTERACTIONS, 2006, 213 : 1 - +
  • [48] Estimation metrics and optimal regularization in a Tikhonov digital filter for the inverse heat conduction problem
    Woodbury, Keith A.
    Beck, James V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 62 : 31 - 39
  • [49] COMPREHENSIVE INVESTIGATION OF AN INVERSE GEOMETRY PROBLEM IN HEAT CONDUCTION VIA ITERATIVE REGULARIZATION METHOD
    Fazeli, H.
    Forooghi, P.
    COMPUTATIONAL THERMAL SCIENCES, 2011, 3 (03): : 187 - 201
  • [50] Differential-difference regularization for a 2D inverse heat conduction problem
    Qian, Zhi
    Zhang, Qiang
    INVERSE PROBLEMS, 2010, 26 (09)