Fourier regularization of an one dimensional non-standard inverse heat conduction problem

被引:0
|
作者
Qiu, Chun-Yu
Tao, Jian-Hong
Fu, Chu-Li
机构
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Inverse investigation of non-Fourier heat conduction in tissue
    Liu, Kuo-Chi
    Chen, Han-Taw
    Cheng, Po-Jen
    JOURNAL OF THERMAL BIOLOGY, 2016, 62 : 123 - 128
  • [32] REGULARIZATION OF THE SOLUTION OF THE INVERSE HEAT-CONDUCTION PROBLEM IN A VARIATIONAL FORMULATION.
    Markin, A.D.
    Pyatyshkin, G.G.
    1600, (52):
  • [33] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Milad Karimi
    Fridoun Moradlou
    Mojtaba Hajipour
    Journal of Scientific Computing, 2020, 83
  • [34] A Mollification Regularization Method for a Fractional-Diffusion Inverse Heat Conduction Problem
    Deng, Zhi-Liang
    Yang, Xiao-Mei
    Feng, Xiao-Li
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [35] Regularization Technique for an Inverse Space-Fractional Backward Heat Conduction Problem
    Karimi, Milad
    Moradlou, Fridoun
    Hajipour, Mojtaba
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [36] A modified regularization method for an inverse heat conduction problem with only boundary value
    Wei Cheng
    Yun-Jie Ma
    Boundary Value Problems, 2016
  • [37] A modified regularization method for an inverse heat conduction problem with only boundary value
    Cheng, Wei
    Ma, Yun-Jie
    BOUNDARY VALUE PROBLEMS, 2016,
  • [38] A numerical and experimental study of a one-dimensional space boundary inverse heat conduction problem
    Chen, TF
    Lin, S
    Wang, JCY
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 1999, 23 (02) : 267 - 274
  • [39] Shannon-Taylor technique for solving one-dimensional inverse heat conduction problem
    Annaby, M. H.
    Al-Abdi, I. A.
    Ghaleb, A. F.
    Abou-Dina, M. S.
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 1107 - 1123
  • [40] Shannon-Taylor technique for solving one-dimensional inverse heat conduction problem
    M. H. Annaby
    I. A. Al-Abdi
    A. F. Ghaleb
    M. S. Abou-Dina
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1107 - 1123