FSNA: Few-Shot Object Detection via Neighborhood Information Adaption and All Attention

被引:4
|
作者
Zhu, Jinxiang [1 ,2 ]
Wang, Qi [1 ]
Dong, Xinyu [1 ]
Ruan, Weijian [3 ,4 ]
Chen, Haolin [2 ]
Lei, Liang [2 ]
Hao, Gefei [1 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 510006, Peoples R China
[4] China Elect Technol Grp Corp, Smart City Res Inst, Beijing 518038, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Task analysis; Metalearning; Data models; Tuning; Training; Target recognition; Few-shot learning; object detection; neighborhood information; attention mechanism;
D O I
10.1109/TCSVT.2024.3370600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Few-shot object detection (FSOD), a formidable task centered around developing inclusive models with annotated constrained samples, has attracted increasing interest in recent years. This discipline addresses unbalanced data distributions, which are particularly relevant to authentic scenarios. Although recent FSOD efforts have achieved considerable success in terms of localization, recognition remains a formidable obstacle. This stems from the fact that typical FSOD models evolve from general object detection frameworks predicated on extensive training data, and they underutilize and mine data information in scenarios with restricted samples, resulting in subpar performance. To address this deficiency, we introduce a groundbreaking methodology that is specifically tailored to overcome the inadequate sample challenge in FSOD tasks. Our approach incorporates a neighborhood information adaption (NIA) module that is designed to dynamically utilize information near the target, assisting in robustly performing object identification within the target domain. In addition, we propose an innovative attention mechanism called all attention, which not only encapsulates the dependencies of each position within a single feature map but also leverages correlations with other feature maps. This methodology culminates in more refined feature representations, which are particularly advantageous in situations with limited data. Comprehensive experiments conducted on the PASCAL VOC and COCO datasets illustrate that our technique achieves a substantial improvement with regard to addressing the FSOD task.
引用
收藏
页码:7121 / 7134
页数:14
相关论文
共 50 条
  • [41] Spatial reasoning for few-shot object detection
    Kim, Geonuk
    Jung, Hong-Gyu
    Lee, Seong-Whan
    PATTERN RECOGNITION, 2021, 120
  • [42] Industrial few-shot fractal object detection
    Huang, Haoran
    Luo, Xiaochuan
    Yang, Chen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (28): : 21055 - 21069
  • [43] Hallucination Improves Few-Shot Object Detection
    Zhang, Weilin
    Wang, Yu-Xiong
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 13003 - 13012
  • [44] Few-Shot Object Detection with Model Calibration
    Fan, Qi
    Tang, Chi-Keung
    Tai, Yu-Wing
    COMPUTER VISION, ECCV 2022, PT XIX, 2022, 13679 : 720 - 739
  • [45] A Closer Look at Few-Shot Object Detection
    Liu, Yuhao
    Dong, Le
    He, Tengyang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 430 - 447
  • [46] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [47] Industrial few-shot fractal object detection
    Haoran Huang
    Xiaochuan Luo
    Chen Yang
    Neural Computing and Applications, 2023, 35 : 21055 - 21069
  • [48] Transformation Invariant Few-Shot Object Detection
    Li, Aoxue
    Li, Zhenguo
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3093 - 3101
  • [49] Few-Shot Object Detection with Weight Imprinting
    Dingtian Yan
    Jitao Huang
    Hai Sun
    Fuqiang Ding
    Cognitive Computation, 2023, 15 : 1725 - 1735
  • [50] Few-Shot Object Detection with Foundation Models
    Han, Guangxing
    Lim, Ser-Nam
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 28608 - 28618