FSNA: Few-Shot Object Detection via Neighborhood Information Adaption and All Attention

被引:4
|
作者
Zhu, Jinxiang [1 ,2 ]
Wang, Qi [1 ]
Dong, Xinyu [1 ]
Ruan, Weijian [3 ,4 ]
Chen, Haolin [2 ]
Lei, Liang [2 ]
Hao, Gefei [1 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 510006, Peoples R China
[4] China Elect Technol Grp Corp, Smart City Res Inst, Beijing 518038, Peoples R China
基金
中国国家自然科学基金;
关键词
Object detection; Task analysis; Metalearning; Data models; Tuning; Training; Target recognition; Few-shot learning; object detection; neighborhood information; attention mechanism;
D O I
10.1109/TCSVT.2024.3370600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Few-shot object detection (FSOD), a formidable task centered around developing inclusive models with annotated constrained samples, has attracted increasing interest in recent years. This discipline addresses unbalanced data distributions, which are particularly relevant to authentic scenarios. Although recent FSOD efforts have achieved considerable success in terms of localization, recognition remains a formidable obstacle. This stems from the fact that typical FSOD models evolve from general object detection frameworks predicated on extensive training data, and they underutilize and mine data information in scenarios with restricted samples, resulting in subpar performance. To address this deficiency, we introduce a groundbreaking methodology that is specifically tailored to overcome the inadequate sample challenge in FSOD tasks. Our approach incorporates a neighborhood information adaption (NIA) module that is designed to dynamically utilize information near the target, assisting in robustly performing object identification within the target domain. In addition, we propose an innovative attention mechanism called all attention, which not only encapsulates the dependencies of each position within a single feature map but also leverages correlations with other feature maps. This methodology culminates in more refined feature representations, which are particularly advantageous in situations with limited data. Comprehensive experiments conducted on the PASCAL VOC and COCO datasets illustrate that our technique achieves a substantial improvement with regard to addressing the FSOD task.
引用
收藏
页码:7121 / 7134
页数:14
相关论文
共 50 条
  • [21] Efficient Few-Shot Object Detection via Knowledge Inheritance
    Yang, Ze
    Zhang, Chi
    Li, Ruibo
    Xu, Yi
    Lin, Guosheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 321 - 334
  • [22] Few-shot Object Detection via Improved Classification Features
    Jiang, Xinyu
    Li, Zhengjia
    Tian, Maoqing
    Liu, Jianbo
    Yi, Shuai
    Miao, Duoqian
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5375 - 5384
  • [23] Object-Aware Attention in Few-Shot Learning
    Shen, Yeqing
    Mo, Lisha
    Ma, Huimin
    Hu, Tianyu
    Dong, Yuhan
    IMAGE AND GRAPHICS TECHNOLOGIES AND APPLICATIONS, IGTA 2021, 2021, 1480 : 95 - 108
  • [24] ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection
    Xin, Zhimeng
    Wu, Tianxu
    Chen, Shiming
    Zou, Yixiong
    Shao, Ling
    You, Xinge
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5564 - 5576
  • [25] Multiscale Dynamic Attention and Hierarchical Spatial Aggregation for Few-Shot Object Detection
    An, Yining
    Song, Chunlin
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [26] Few-Shot Object Detection via Transfer Learning and Contrastive Reweighting
    Wu, Zhen
    Li, Haowei
    Zhang, Dongyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 78 - 87
  • [27] A comparative attention framework for better few-shot object detection on aerial images
    Le Jeune, Pierre
    Bahaduri, Bissmella
    Mokraoui, Anissa
    PATTERN RECOGNITION, 2025, 161
  • [28] FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
    Sun, Bo
    Li, Banghuai
    Cai, Shengcai
    Yuan, Ye
    Zhang, Chi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7348 - 7358
  • [29] Few-Shot Object Detection via Back Propagation and Dynamic Learning
    You, Dianlong
    Wang, Peng
    Zhang, Yi
    Wang, Ling
    Jin, Shunfu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2903 - 2908
  • [30] ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection
    Xin, Zhimeng
    Wu, Tianxu
    Chen, Shiming
    Zou, Yixiong
    Shao, Ling
    You, Xinge
    arXiv, 2023,