Fire Recognition Method Based on PSO-BP Neural Network and ResNet50

被引:0
|
作者
Ren, Jing [1 ]
Shi, Xiaoyan [2 ]
Cao, Xianghong [1 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Engn Res Ctr Intelligent Bldg & Human Settle, Sch Bldg & Environm Engn, High Tech Zone, 136 Sci Ave, Zhengzhou 450000, Peoples R China
[2] AVIC Jonhon Optron Technol Co Ltd, 60 Qianjing South Rd, Luoyang 471000, Peoples R China
关键词
Neural network; particle swarm optimization; ResNet; 50; fuzzy reasoning; multi-information source fusion;
D O I
10.1142/S0218001424500228
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of modern society and continuous urbanization have resulted in a proliferation of functional buildings, which offer significant convenience to individuals, but pose significant fire hazards as well. How to detect the fire at the early stage is always the focus of research. This paper proposes a multi-information source fusion fire recognition method based on particle swarm optimization (PSO)-backpropagation (BP) neural networks and ResNet50. The PSO algorithm is applied to optimize the initial parameters of a BP neural network model, while data from three sensors - temperature, humidity and smoke - are integrated, through iterative training of the system, accurate recognition of sensor data can be achieved. Additionally, a method is proposed for the recognition of infrared fire images using ResNet50 and transfer learning. By improving the ResNet50 network model and migrating the ResNet50 pre-trained network weight, infrared fire image recognition accuracy is further enhanced. Then the sensor information recognition results and image information recognition results are input into the fuzzy system for fusion reasoning again, and the final decision is output according to the set fuzzy rules. Experimental findings demonstrate that the multi-information source fusion approach utilizing the PSO-BP neural network and ResNet50 significantly enhances the accuracy and response time of fire recognition, and achieves a remarkable recognition effect.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Study of a new improved PSO-BP neural network algorithm
    Zhang, Li
    Zhao, Jia-Qiang
    Zhang, Xu-Nan
    Zhang, Sen-Lin
    Journal of Harbin Institute of Technology (New Series), 2013, 20 (05) : 106 - 112
  • [42] Prediction Method of Concentricity and Perpendicularity of Aero Engine Multistage Rotors Based on PSO-BP Neural Network
    Sun, Chuanzhi
    Li, Chengtian
    Liu, Yongmeng
    Liu, Zewei
    Wang, Xiaoming
    Tan, Jiubin
    IEEE ACCESS, 2019, 7 : 132271 - 132278
  • [43] A Novel Hybrid PSO-BP Algorithm for Neural Network Training
    Liu, Jun
    Qiu, Xiaohong
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 1, PROCEEDINGS, 2009, : 300 - +
  • [44] Study of a New Improved PSO-BP Neural Network Algorithm
    Li Zhang
    JiaQiang Zhao
    XuNan Zhang
    SenLin Zhang
    Journal of Harbin Institute of Technology, 2013, 20 (05) : 106 - 112
  • [45] Study of a New Improved PSO-BP Neural Network Algorithm
    Li Zhang
    Jia-Qiang Zhao
    Xu-Nan Zhang
    Sen-Lin Zhang
    Journal of Harbin Institute of Technology(New series), 2013, 20 (05) : 106 - 112
  • [46] Engine Fault Diagnosis Based on PSO-BP Network
    Nie, Lixin
    Zhang, Tianxia
    Wang, Shuju
    Zhang, Liping
    MATERIALS AND MANUFACTURING, PTS 1 AND 2, 2011, 299-300 : 1307 - 1311
  • [47] Electricity Quantity Prediction Model of Power Battery based on PSO-BP Neural Network
    He, Zhao
    Wen, Junfeng
    Lin, Qionglian
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1428 - 1433
  • [48] PSO-BP neural network based on physical health perception of the elderly in retirement home
    Bai, Jiujun
    Zhao, Ying
    Chen, Xuebo
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 990 - 995
  • [49] Pressure Drop Prediction of Crude Oil Pipeline Based on PSO-BP Neural Network
    Wei, Lixin
    Zhang, Yu
    Ji, Lili
    Ye, Lin
    Zhu, Xuanchen
    Fu, Jin
    ENERGIES, 2022, 15 (16)
  • [50] BFG holder forecasting model and application based on PSO-BP neural network model
    Wei, Jinyu
    Zhang, Wei
    Li, Xin
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2013, 44 (SUPPL.1): : 266 - 270