Fire Recognition Method Based on PSO-BP Neural Network and ResNet50

被引:0
|
作者
Ren, Jing [1 ]
Shi, Xiaoyan [2 ]
Cao, Xianghong [1 ]
机构
[1] Zhengzhou Univ Light Ind, Henan Engn Res Ctr Intelligent Bldg & Human Settle, Sch Bldg & Environm Engn, High Tech Zone, 136 Sci Ave, Zhengzhou 450000, Peoples R China
[2] AVIC Jonhon Optron Technol Co Ltd, 60 Qianjing South Rd, Luoyang 471000, Peoples R China
关键词
Neural network; particle swarm optimization; ResNet; 50; fuzzy reasoning; multi-information source fusion;
D O I
10.1142/S0218001424500228
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of modern society and continuous urbanization have resulted in a proliferation of functional buildings, which offer significant convenience to individuals, but pose significant fire hazards as well. How to detect the fire at the early stage is always the focus of research. This paper proposes a multi-information source fusion fire recognition method based on particle swarm optimization (PSO)-backpropagation (BP) neural networks and ResNet50. The PSO algorithm is applied to optimize the initial parameters of a BP neural network model, while data from three sensors - temperature, humidity and smoke - are integrated, through iterative training of the system, accurate recognition of sensor data can be achieved. Additionally, a method is proposed for the recognition of infrared fire images using ResNet50 and transfer learning. By improving the ResNet50 network model and migrating the ResNet50 pre-trained network weight, infrared fire image recognition accuracy is further enhanced. Then the sensor information recognition results and image information recognition results are input into the fuzzy system for fusion reasoning again, and the final decision is output according to the set fuzzy rules. Experimental findings demonstrate that the multi-information source fusion approach utilizing the PSO-BP neural network and ResNet50 significantly enhances the accuracy and response time of fire recognition, and achieves a remarkable recognition effect.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Classification of flour types based on PSO-BP neural network
    Chen, Maomao
    Liu, Mingliang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2591 - 2595
  • [12] Phishing Detection Research Based on PSO-BP Neural Network
    Chen, Wenwu
    Wang, Xu An
    Zhang, Wei
    Xu, Chunfen
    ADVANCES IN INTERNET, DATA & WEB TECHNOLOGIES, 2018, 17 : 990 - 998
  • [13] Research on Maize Disease Recognition Method Based on Improved ResNet50
    Wang, Guowei
    Yu, Haiye
    Sui, Yuanyuan
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [14] A forecasting method of forest pests based on the rough set and PSO-BP neural network
    Bai, Tiecheng
    Meng, Hongbing
    Yao, Jianghe
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8): : 1699 - 1707
  • [15] A forecasting method of forest pests based on the rough set and PSO-BP neural network
    Tiecheng Bai
    Hongbing Meng
    Jianghe Yao
    Neural Computing and Applications, 2014, 25 : 1699 - 1707
  • [16] A Method for Evaluating User Interface Satisfaction Using Facial Recognition Technology and a PSO-BP Neural Network
    Li, Qingchen
    Zheng, Bingzhu
    Wu, Tianyu
    Li, Yajun
    Hao, Pingting
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [17] Network traffic prediction algorithm research based on PSO-BP neural network
    Wei, Cheng
    Peng, Feng
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS RESEARCH AND MECHATRONICS ENGINEERING, 2015, 121 : 1239 - 1243
  • [18] Prediction of plugging formulation based on PSO-BP optimization neural network
    Wang, Xudong
    Chen, Ye
    Huang, Mei
    Zeng, Bo
    Li, Zhengtao
    Su, Junlin
    Zhang, Yuchen
    ENGINEERING REPORTS, 2024, 6 (11)
  • [19] PCA-Based PSO-BP Neural Network Optimization Algorithm
    Shi, Lan
    Tang, Xu
    Lv, Hanhui
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1720 - 1725
  • [20] Deep Neural Network for visual Emotion Recognition based on ResNet50 using Song-Speech characteristics
    Ayadi, Souha
    Lachiri, Zied
    PROCEEDINGS OF THE 2022 5TH INTERNATIONAL CONFERENCE ON ADVANCED SYSTEMS AND EMERGENT TECHNOLOGIES IC_ASET'2022), 2022, : 363 - 368