Addressing Phishing Threats Using A Metaheuristic Perspective On Machine Learning Classification Models Code

被引:0
|
作者
Hu, Bo [1 ]
Zhang, Sainan [1 ]
机构
[1] Nanjing Normal Univ Special Educ, Ctr Informat Construct & Management, Nanjing 210038, Peoples R China
来源
关键词
Phishing; Cyber Attacks; Classification; Data Mining; Optimization Algorithms; Phishing Websites Prediction; Artificial Intelligence; ARCHITECTURE; PREDICTION; ALGORITHM;
D O I
10.6180/jase.202507_28(7).0011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Web phishing attacks have emerged as a significant threat to online security, enabling phishers to steal sensitive financial information and commit fraud. To combat this, many anti-phishing systems have been developed, focusing on detecting phishing content in online communications. This study introduces novel approaches to enhance phishing detection by employing machine learning techniques. Specifically, three different single models were analyzed: Random Forest Classifier (RFC), Adaptive Boosting Classification (ADAC), and Na & iuml;ve Bayes Classification Algorithm (NBC). These models were optimized using Artificial Rabbits Optimization (ARO), resulting in hybrid models RFAR, NBAR, and ADAR. The results of the models' analysis indicate that the RFAR hybrid model performs better than the other single models and their optimized models. The RFAR model achieved precision scores of 0.950 for phishing websites, 0.954 for suspicious websites, and 0.872 for legitimate websites, with corresponding recall values of 0.929, 0.954, and 0.990, respectively. In comparison, the ADAR model was notably effective in classifying legitimate websites with a precision score of 0.896. The study's novelty lies in integrating ARO with traditional classifiers to create hybrid models that improve classification accuracy.
引用
收藏
页码:1503 / 1514
页数:12
相关论文
共 50 条
  • [41] Machine learning models for phishing detection from TLS traffic
    Munish Kumar
    Cheemaladinne Kondaiah
    Alwyn Roshan Pais
    Routhu Srinivasa Rao
    Cluster Computing, 2023, 26 : 3263 - 3277
  • [42] Machine learning models for phishing detection from TLS traffic
    Kumar, Munish
    Kondaiah, Cheemaladinne
    Pais, Alwyn Roshan
    Rao, Routhu Srinivasa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (05): : 3263 - 3277
  • [43] Severity Classification of Code Smells Using Machine-Learning Methods
    Dewangan S.
    Rao R.S.
    Chowdhuri S.R.
    Gupta M.
    SN Computer Science, 4 (5)
  • [44] Metaheuristic schemes and machine learning techniques: A synergistic perspective Preface
    Cuevas, Erik
    Zaldivar, Daniel
    Perez, Marco
    APPLIED MATHEMATICAL MODELLING, 2022, 104 : 850 - 851
  • [45] Revisiting "code smell severity classification using machine learning techniques"
    Hu, Wenhua
    Liu, Lei
    Yang, Peixin
    Zou, Kuan
    Li, Jiajun
    Lin, Guancheng
    Xiang, Jianwen
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 840 - 849
  • [46] Machine Learning Classification Algorithms for Phishing Detection: A Comparative Appraisal and Analysis
    Gana, Noah Ndakotsu
    Abdulhamid, Shafi'I Muhammad
    2019 2ND INTERNATIONAL CONFERENCE OF THE IEEE NIGERIA COMPUTER CHAPTER (NIGERIACOMPUTCONF), 2019, : 19 - 26
  • [47] Detection of Phishing Website Using Machine Learning Approach
    Vilas, Mahajan Mayuri
    Ghansham, Kakade Prachi
    Jaypralash, Sawant Purva
    Shila, Pawar
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2019, : 384 - +
  • [48] Detecting Spear Phishing Attacks Using Machine Learning
    Regulagadda, Ramakrishna
    Krishna, M. Sai
    Prasanth, G.
    Sumalatha, V
    Ramesh, Y. Sai
    INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 1457 - 1459
  • [49] Phishing URL detection using machine learning methods
    Ahammad, S. K. Hasane
    Kale, Sunil D.
    Upadhye, Gopal D.
    Pande, Sandeep Dwarkanath
    Babu, E. Venkatesh
    Dhumane, Amol, V
    Bahadur, Dilip Kumar Jang
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [50] Detecting phishing websites using machine learning technique
    Dutta, Ashit Kumar
    PLOS ONE, 2021, 16 (10):