Addressing Phishing Threats Using A Metaheuristic Perspective On Machine Learning Classification Models Code

被引:0
|
作者
Hu, Bo [1 ]
Zhang, Sainan [1 ]
机构
[1] Nanjing Normal Univ Special Educ, Ctr Informat Construct & Management, Nanjing 210038, Peoples R China
来源
关键词
Phishing; Cyber Attacks; Classification; Data Mining; Optimization Algorithms; Phishing Websites Prediction; Artificial Intelligence; ARCHITECTURE; PREDICTION; ALGORITHM;
D O I
10.6180/jase.202507_28(7).0011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Web phishing attacks have emerged as a significant threat to online security, enabling phishers to steal sensitive financial information and commit fraud. To combat this, many anti-phishing systems have been developed, focusing on detecting phishing content in online communications. This study introduces novel approaches to enhance phishing detection by employing machine learning techniques. Specifically, three different single models were analyzed: Random Forest Classifier (RFC), Adaptive Boosting Classification (ADAC), and Na & iuml;ve Bayes Classification Algorithm (NBC). These models were optimized using Artificial Rabbits Optimization (ARO), resulting in hybrid models RFAR, NBAR, and ADAR. The results of the models' analysis indicate that the RFAR hybrid model performs better than the other single models and their optimized models. The RFAR model achieved precision scores of 0.950 for phishing websites, 0.954 for suspicious websites, and 0.872 for legitimate websites, with corresponding recall values of 0.929, 0.954, and 0.990, respectively. In comparison, the ADAR model was notably effective in classifying legitimate websites with a precision score of 0.896. The study's novelty lies in integrating ARO with traditional classifiers to create hybrid models that improve classification accuracy.
引用
收藏
页码:1503 / 1514
页数:12
相关论文
共 50 条
  • [21] Predicting Phishing Vulnerabilities Using Machine Learning
    Rutherford, Sarah
    Lin, Kevin
    Blaine, Raymond W.
    SOUTHEASTCON 2022, 2022, : 779 - 786
  • [22] Phishing Websites Detection using Machine Learning
    Kulkarni, Arun
    Brown, Leonard L., III
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (07) : 8 - 13
  • [23] Detection of Phishing Websites Using Machine Learning
    Abbas, Ahmed Raad
    Singh, Sukhvir
    Kau, Mandeep
    INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019, 2020, 89 : 1307 - 1314
  • [24] Detection of phishing websites using machine learning
    Razaque, Abdul
    Frej, Mohamed Ben Haj
    Sabyrov, Dauren
    Shaikhyn, Aidana
    Amsaad, Fathi
    Oun, Ahmed
    Proceedings - 2020 IEEE Cloud Summit, Cloud Summit 2020, 2020, : 103 - 107
  • [25] Detection of Phishing Websites using Machine Learning
    Razaque, Abdul
    Frej, Mohamed Ben Haj
    Sabyrov, Dauren
    Shaikhyn, Aidana
    Amsaad, Fathi
    Oun, Ahmed
    2020 IEEE CLOUD SUMMIT, 2020, : 103 - 107
  • [26] Detecting Phishing Domains Using Machine Learning
    Alnemari, Shouq
    Alshammari, Majid
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [27] Detecting Phishing Website Using Machine Learning
    Alkawaz, Mohammed Hazim
    Steven, Stephanie Joanne
    Hajamydeen, Asif Iqbal
    2020 16TH IEEE INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA 2020), 2020, : 111 - 114
  • [28] Prediction of phishing websites using machine learning
    Mithilesh Kumar Pandey
    Munindra Kumar Singh
    Saurabh Pal
    B. B. Tiwari
    Spatial Information Research, 2023, 31 : 157 - 166
  • [29] Comparison of machine learning techniques for classification of phishing web sites
    Kalayci, Tahir Emre
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2018, 24 (05): : 870 - 878
  • [30] Employing Machine Learning Techniques for Detection and Classification of Phishing Emails
    Moradpoor, Naghmeh
    Clavie, Benjamin
    Buchanan, Bill
    2017 COMPUTING CONFERENCE, 2017, : 149 - 156