Multi-feature fusion friend recommendation algorithm based on complex network

被引:0
|
作者
Pan K. [1 ]
Chen H. [2 ]
Liu Q. [2 ]
Wang J. [3 ]
Pu Y. [2 ]
Yin C. [1 ]
Yang Z. [1 ]
Zhao N. [1 ,2 ]
机构
[1] Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming
[2] School of Software, Yunnan University, Kunming
[3] College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming
关键词
complex network; friend recommendation; multi-feature; node importance; social network;
D O I
10.1504/IJICT.2023.134831
中图分类号
学科分类号
摘要
At present, one of the problems of friend recommendation algorithms used in most social networks is that these networks often rely on a single index for recommendation. To solve this problem, multi-feature fusion (MFF) algorithm, a social network friend recommendation algorithm based on complex network theory, is proposed. The recommendation algorithm works by firstly divides the existing social networks into different communities. The importance of nodes in a social network is then calculated through the fusion of nodes’ importance information. Lastly, by integrating node importance information, friend number information and the shortest path information features are comprehensively evaluated, so as to generate final friend recommendation list. Simulation shows that with the increase of network nodes, the MFF algorithm outperforms common friend (CF) algorithm and friend similarity (FS) algorithm over all evaluation indicators including P-value, R-value and F1-value. Copyright © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:401 / 423
页数:22
相关论文
共 50 条
  • [41] Fast Image Segmentation Algorithm Based on Superpixel Multi-feature Fusion
    Hou X.-G.
    Zhao H.-Y.
    Ma Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (10): : 2126 - 2133
  • [42] Video Flame Detection Algorithm Based On Multi-Feature Fusion Technique
    Zhang Xi
    Xu Fang
    Song Zhen
    Mei Zhibin
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 4291 - 4294
  • [43] Fault Diagnosis for the Power Transformer Based on Multi-feature Fusion algorithm
    Liu, Chenfei
    Cui, Haoyang
    Li, Gaofang
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING (ICMMCCE 2017), 2017, 141 : 647 - 651
  • [44] Human Action Recognition Algorithm Based on Multi-Feature Map Fusion
    Wang, Haofei
    Li, Junfeng
    IEEE ACCESS, 2020, 8 : 150945 - 150954
  • [45] An improved UPF object tracking algorithm based on multi-feature fusion
    Li, Xiao-Xu
    Dai, Bin
    Cao, Jie
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2014, 48 (10): : 1473 - 1478
  • [46] Hierarchical particle filter tracking algorithm based on multi-feature fusion
    Gan, Minggang
    Cheng, Yulong
    Wang, Yanan
    Chen, Jie
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2016, 27 (01) : 51 - 62
  • [47] Radar jamming signal recognition algorithm based on multi-feature fusion
    Hao, Guocheng
    Bu, Laite
    Lu, Mengyuan
    Liu, Hui
    Liu, Gang
    Guo, Juan
    DIGITAL SIGNAL PROCESSING, 2025, 158
  • [48] Influential nodes identification for complex networks based on multi-feature fusion
    Li, Shaobao
    Quan, Yiran
    Luo, Xiaoyuan
    Wang, Juan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [49] Algorithm of Car License Plates Location Based on Multi-feature Fusion
    Zeng, Ruili
    Li, Gang
    Xiao, Yunkui
    Wang, Mengjun
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 8483 - +
  • [50] Aerial Infrared Target Recognition Algorithm Based on Multi-feature Fusion
    Liu, Qiyan
    Zhang, Kai
    Li, Sijia
    2024 9TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE 2024, 2024, : 371 - 376