Multi-feature fusion friend recommendation algorithm based on complex network

被引:0
|
作者
Pan K. [1 ]
Chen H. [2 ]
Liu Q. [2 ]
Wang J. [3 ]
Pu Y. [2 ]
Yin C. [1 ]
Yang Z. [1 ]
Zhao N. [1 ,2 ]
机构
[1] Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming
[2] School of Software, Yunnan University, Kunming
[3] College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming
关键词
complex network; friend recommendation; multi-feature; node importance; social network;
D O I
10.1504/IJICT.2023.134831
中图分类号
学科分类号
摘要
At present, one of the problems of friend recommendation algorithms used in most social networks is that these networks often rely on a single index for recommendation. To solve this problem, multi-feature fusion (MFF) algorithm, a social network friend recommendation algorithm based on complex network theory, is proposed. The recommendation algorithm works by firstly divides the existing social networks into different communities. The importance of nodes in a social network is then calculated through the fusion of nodes’ importance information. Lastly, by integrating node importance information, friend number information and the shortest path information features are comprehensively evaluated, so as to generate final friend recommendation list. Simulation shows that with the increase of network nodes, the MFF algorithm outperforms common friend (CF) algorithm and friend similarity (FS) algorithm over all evaluation indicators including P-value, R-value and F1-value. Copyright © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:401 / 423
页数:22
相关论文
共 50 条
  • [21] The Underwater Target Detection Based on Multi-Feature Fusion Algorithm
    Xu Zhijing
    Cao Peipei
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL II, 2010, : 460 - 463
  • [22] A Research on the Fruit Recognition Algorithm Based on the Multi-Feature Fusion
    Tang, Yanfeng
    Zhang, Yawan
    Zhu, Ying
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1865 - 1869
  • [23] A Speech Steganalysis Algorithm Based on Multi-Feature Fusion and BiLSTM
    Su Z.-P.
    Zhang L.
    Zhang G.-F.
    Yue F.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (05): : 1300 - 1309
  • [24] Multi-feature based event recommendation in Event-Based Social Network
    Cao, Jiuxin
    Zhu, Ziqing
    Shi, Liang
    Liu, Bo
    Ma, Zhuo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2018, 11 (01) : 618 - 633
  • [25] Multi-feature decomposition and transformer-fusion: an infrared and visible image fusion network based on multi-feature decomposition and transformer
    Li, Xujun
    Duan, Zhicheng
    Chang, Jia
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [26] Background Modeling Algorithm for Multi-feature Fusion
    Guo, Zhicheng
    Dang, Jianwu
    Wang, Yangping
    Jin, Jing
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1117 - 1121
  • [27] Multi-feature based event recommendation in Event-Based Social Network
    Jiuxin Cao
    Ziqing Zhu
    Liang Shi
    Bo Liu
    Zhuo Ma
    International Journal of Computational Intelligence Systems, 2018, 11 : 618 - 633
  • [28] A time-aware developer recommendation approach based on multi-feature fusion
    Zhang, Lu
    Chen, Shizhan
    Fan, Guodong
    Wu, Hongyue
    Chen, Hongqi
    Feng, Zhiyong
    APPLIED SOFT COMPUTING, 2025, 169
  • [29] Multi-feature fusion target tracking algorithm
    Liang Hui-hui
    He Qiu-sheng
    Jia Wei-zhen
    Zhang Wei-feng
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (06) : 583 - 594
  • [30] A multi-feature fusion algorithm for driver fatigue detection based on a lightweight convolutional neural network
    Wangfeng Cheng
    Xuanyao Wang
    Bangguo Mao
    The Visual Computer, 2024, 40 : 2419 - 2441