Multi-feature fusion friend recommendation algorithm based on complex network

被引:0
|
作者
Pan K. [1 ]
Chen H. [2 ]
Liu Q. [2 ]
Wang J. [3 ]
Pu Y. [2 ]
Yin C. [1 ]
Yang Z. [1 ]
Zhao N. [1 ,2 ]
机构
[1] Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming
[2] School of Software, Yunnan University, Kunming
[3] College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming
关键词
complex network; friend recommendation; multi-feature; node importance; social network;
D O I
10.1504/IJICT.2023.134831
中图分类号
学科分类号
摘要
At present, one of the problems of friend recommendation algorithms used in most social networks is that these networks often rely on a single index for recommendation. To solve this problem, multi-feature fusion (MFF) algorithm, a social network friend recommendation algorithm based on complex network theory, is proposed. The recommendation algorithm works by firstly divides the existing social networks into different communities. The importance of nodes in a social network is then calculated through the fusion of nodes’ importance information. Lastly, by integrating node importance information, friend number information and the shortest path information features are comprehensively evaluated, so as to generate final friend recommendation list. Simulation shows that with the increase of network nodes, the MFF algorithm outperforms common friend (CF) algorithm and friend similarity (FS) algorithm over all evaluation indicators including P-value, R-value and F1-value. Copyright © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:401 / 423
页数:22
相关论文
共 50 条
  • [1] Sequence Neural Network for Recommendation with Multi-feature Fusion
    Gu, Xiao
    Zhao, Haiping
    Jian, Ling
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [2] A Hybrid Neural Network Based on Multi-feature Fusion for Paper Recommendation
    Zheng, Mingx Ng
    Li, Xiaobo
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [3] Multi-Feature Fusion Based Model for MOOC Recommendation
    Shu, Xinfeng
    Cao, Wangmei
    Wang, Shuyan
    Computer Engineering and Applications, 2023, 59 (10) : 123 - 133
  • [4] Multi-feature fusion tracking algorithm based on generative compression network
    Wang, Peng
    Fu, Huitong
    Li, Xiaoyan
    Guo, Jia
    Lv, Zhigang
    Di, Ruohai
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 124 : 206 - 214
  • [5] Multi-feature Fusion Based Short Session Recommendation Model
    Xia H.
    Huang K.
    Liu Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (04): : 354 - 365
  • [6] Multi-feature Fusion Flame Detection Algorithm Based on BP Neural Network
    Wu, Jin
    Yang, Ling
    Gao, Yaqiong
    Zhang, Zhaoqi
    ADVANCES IN NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, ICNC-FSKD 2022, 2023, 153 : 395 - 401
  • [7] Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network
    Huang, Mengmeng
    Jiang, Mingfeng
    Li, Yang
    He, Xiaoyu
    Wang, Zefeng
    Wu, Yongquan
    Ke, Wei
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2025, 42 (01): : 49 - 56
  • [8] Improved DeepSORT Algorithm Based on Multi-Feature Fusion
    Liu, Haiying
    Pei, Yuncheng
    Bei, Qiancheng
    Deng, Lixia
    APPLIED SYSTEM INNOVATION, 2022, 5 (03)
  • [9] An Improved ORB Algorithm Based on Multi-feature Fusion
    Ma, Chaoqun
    Hu, Xiaoguang
    Fu, Li
    Zhang, Guofeng
    2018 IEEE 27TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2018, : 729 - 734
  • [10] Multi-feature fusion dynamic target tracking algorithm for complex scenes
    Cheng, Jian
    Chen, Liang
    Wang, Kai
    Guo, Yinan
    Yan, Pengpeng
    Zhongguo Kuangye Daxue Xuebao/Journal of China University of Mining and Technology, 2021, 50 (05): : 1002 - 1010