Preparation of N-doped carbon material derived from porous organic polymer as an active center to growth nickel cobalt phosphide for high-performance supercapacitors

被引:1
|
作者
Narimisa, Sh. [1 ]
Mouradzadegun, A. [1 ,2 ]
Zargar, B. [1 ]
Ganjali, M. R. [3 ,4 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Sci, Dept Chem, Ahvaz 6135743311, Iran
[2] Univ Tehran, Coll Sci, Sch Chem, Tehran 1417614411, Iran
[3] Univ Tehran, Coll Sci, Ctr Excellence Electrochem, Sch Chem, Tehran 111554563, Iran
[4] Univ Tehran Med Sci, Endocrinol & Metab Mol Cellular Sci Inst, Biosensor Res Ctr, Tehran 111554563, Iran
关键词
N-doped porous carbon materials; Calix[4]resorcinarene; Ni1Co2P@N-C-800; Supercapacitor; Energy storage; LAYERED DOUBLE HYDROXIDE; NANOSHEETS; ELECTRODE; ARRAYS;
D O I
10.1016/j.est.2024.114340
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, nitrogen-doped porous carbon materials derived from Azo-bridged calix[4]resorcinarene porous organic polymer were synthesized via pyrolysis at various temperatures. Notably, this work represents the first successful fabrication of nitrogen-doped carbon materials utilizing the Azo group (N=N) as a nitrogen source. This novel approach introduces diverse nitrogen configurations into the carbon matrix, crucial for enhancing material properties. Among the synthesized materials, nitrogen-doped carbon derived at 800 degrees C (N-C-800) exhibited exceptional characteristics including a high content of graphitic nitrogen, substantial specific surface area, hierarchical porous structure, and favorable conductivity, rendering it suitable for supercapacitor applications. N-C-800 demonstrated a remarkable specific capacity of 340 F g- 1 . Furthermore, the presence of pyridinic-nitrogen functionalities in N-C-800 facilitated the anchoring of nickel cobalt phosphide nanowires, fostering a strong interaction between nitrogen and the metal. The resulting composite, Ni1Co2P@N-C-800, served as a positive electrode and showcased superior specific capacity of 1275 F g- 1 with an impressive capacitance retention of 87 % over 1000 cycles at 1 A g- 1 . Additionally, an asymmetric supercapacitor configuration, Ni1Co2P@N-C-800//N-C-800, utilizing both N-C-800 and Ni1Co2P@N-C-800 electrodes, was simulated, delivering an energy density of 50.44 Wh kg-1 at a power density of 799 W kg-1 . This work underscores the potential of facile synthesis routes for generating novel electrode materials with enhanced electrochemical efficiency, offering promising avenues for advanced energy storage applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] N-doped porous carbon derived from pomelo peel for high-performance supercapacitor
    He, Jingjing
    Li, Ming
    Chen, Xi
    Wu, Yang
    Sun, Jiahao
    Wen, Xiaogang
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [22] High-performance N-doped activated carbon derived from walnut green peel for supercapacitors
    Liu, Yue
    Tian, Na
    Liu, Xuan-He
    Shang, Hong
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (13) : 14641 - 14651
  • [23] Decorating N-doped carbon-coated cobalt phosphide nanoparticles onto N-doped carbon nanotubes for high-performance supercapacitors and efficient methanol electro-oxidation
    Liu, Xiaolin
    Liu, Aifeng
    Tian, Tian
    Lv, Zheng
    Guo, Zengcai
    Mu, Jingbo
    Zhang, Xiaoliang
    Wang, Yanming
    FUEL, 2024, 363
  • [24] N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors
    Sheng, Li-zhi
    Zhao, Yun-yun
    Hou, Bao-quan
    Xiao, Zhen-peng
    Jiang, Li-li
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2021, 36 (01) : 167 - 175
  • [25] Facile Synthesis of N-Doped Porous Carbon Materials Derived from Bombyx Mori Silk for High-Performance Symmetric Supercapacitors
    Li, Lingyan
    Wen, Jingjing
    Liang, Jiajing
    Cheng, Xiaoyang
    Yao, Jiahui
    Gao, Yu
    Hu, Songhao
    Wu, Hao
    Zheng, Jinfeng
    Li, Guifang
    CHEMISTRY-A EUROPEAN JOURNAL, 2025,
  • [26] Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage
    Wang, Ying-Ying
    Hou, Bao-Hua
    Lu, Hong-Yan
    Wan, Fang
    Wang, Jie
    Wu, Xing-Long
    RSC ADVANCES, 2015, 5 (118) : 97427 - 97434
  • [27] Tuning active sites of N-doped porous carbon catalysts derived from vinasse for high-performance electrochemical sensing
    Ipekci, Hasan H.
    Kazak, Omer
    Tor, Ali
    Uzunoglu, Aytekin
    PARTICULATE SCIENCE AND TECHNOLOGY, 2023, 41 (01) : 93 - 104
  • [28] Hierarchical Nickel-Cobalt Phosphide/Phosphate/Carbon Nanosheets for High-Performance Supercapacitors
    Zhang, Xiaolong
    Wang, Jiemei
    Sui, Yanwei
    Wei, Fuxiang
    Qi, Jiqiu
    Meng, Qingkun
    He, Yezeng
    Zhuang, Dongdong
    ACS APPLIED NANO MATERIALS, 2020, 3 (12) : 11945 - 11954
  • [29] Synthesis and processing optimization of N-doped hierarchical porous carbon derived from corncob for high performance supercapacitors
    Song, Yang
    Qu, Wenwen
    He, Yuhang
    Yang, Hanxiao
    Du, Miao
    Wang, Aijuan
    Yang, Qing
    Chen, Yuanqing
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [30] Efficient construction of peanut shell-derived N-doped porous carbon materials for high-performance symmetric supercapacitors
    Cheng, Xiaoyang
    Zhang, Lihua
    Li, Lingyan
    Wu, Hao
    Zheng, Jinfeng
    Li, Jingwei
    Yi, Ting
    DIAMOND AND RELATED MATERIALS, 2025, 151