Facile Synthesis of N-Doped Porous Carbon Materials Derived from Bombyx Mori Silk for High-Performance Symmetric Supercapacitors

被引:0
|
作者
Li, Lingyan [1 ]
Wen, Jingjing [1 ]
Liang, Jiajing [1 ]
Cheng, Xiaoyang [1 ]
Yao, Jiahui [1 ]
Gao, Yu [1 ]
Hu, Songhao [1 ]
Wu, Hao [1 ]
Zheng, Jinfeng [2 ]
Li, Guifang [3 ]
机构
[1] Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Taiyuan 030032, Peoples R China
[2] Shanxi Datong Univ, Engn Res Ctr Coal Based Ecol Carbon Sequestrat Tec, Key Lab Graphene Forestry Applicat Natl Forest & G, Minstry Educ, Datong 037009, Peoples R China
[3] Jimei Univ, Coll Marine Equipment & Mech Engn, Key Lab Energy Cleaning Utilizat Dev Cleaning Comb, Xiamen Key Lab Marine Corros & Smart Protect Mat, Xiamen 361021, Peoples R China
关键词
Bombyx mori silk; Carbon material; N-doping; Energy storage; Supercapacitor; NITROGEN; GRAPHENE; OXYGEN;
D O I
10.1002/chem.202404569
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heteroatom doping and structural modification can significantly improve the electrochemical properties of carbon materials, but it is difficult to achieve synchronous control of the two. To this end, N-doped porous carbon material (BCNK) was synthesized using bombyx mori silk as carbon source, melamine and KHCO3 as activators. When only melamine is added, the prepared carbon material (BCN) only increases the heteroatom content. When only KHCO3 is added, the prepared carbon material (BCK) only increases the specific surface area and pore volume. The microstructure and heteratom content of carbon materials can be controlled simultaneously by adding two activators at the same time. Electrochemical tests show that the electrochemical performance of BCNK is higher than that of BCN and BCK. It is worth mentioning that the specific surface area of BCNK is much lower than that of BCK, and the heteroatom content is higher than that of BCK, indicating that increasing the heteroatom content is more conducive to achieving excellent electrochemical performance than increasing the specific surface area. This study not only provides a new way for the application of silk in supercapacitors, but also enables researchers to re-understand the relationship between the structure and electrochemical properties of carbon materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Efficient construction of peanut shell-derived N-doped porous carbon materials for high-performance symmetric supercapacitors
    Cheng, Xiaoyang
    Zhang, Lihua
    Li, Lingyan
    Wu, Hao
    Zheng, Jinfeng
    Li, Jingwei
    Yi, Ting
    DIAMOND AND RELATED MATERIALS, 2025, 151
  • [2] Facile preparation of N-doped porous carbon nanosheets derived from potassium citrate/melamine for high-performance supercapacitors
    Kim, Deokhwan
    Jin, Xuanzhen
    Cho, Youngseul
    Lim, Jiho
    Yan, Bingyi
    Ko, Dongjin
    Kim, Dae Kyom
    Piao, Yuanzhe
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 892
  • [3] Facile synthesis of N, P co-doped carbon materials derived from corn bract for high-performance symmetric supercapacitors
    Zheng, Jinfeng
    Cao, Tianlong
    Ding, Baopeng
    Zhang, Xiaohui
    Wu, Hao
    Li, Xinran
    JOURNAL OF ENERGY STORAGE, 2025, 110
  • [4] N-doped hierarchically porous carbon derived from grape marcs for high-performance supercapacitors
    Zhang, Jinhao
    Chen, Hou
    Bai, Jiabao
    Xu, Ming
    Luo, Chenli
    Yang, Lixia
    Bai, Liangjiu
    Wei, Donglei
    Wang, Wenxiang
    Yang, Huawei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
  • [5] N-doped hierarchically porous carbon derived from grape marcs for high-performance supercapacitors
    Zhang, Jinhao
    Chen, Hou
    Bai, Jiabao
    Xu, Ming
    Luo, Chenli
    Yang, Lixia
    Bai, Liangjiu
    Wei, Donglei
    Wang, Wenxiang
    Yang, Huawei
    Yang, Huawei (huaweiyang@ldu.edu.cn); Chen, Hou (chenhou@ldu.edu.cn), 1600, Elsevier Ltd (854):
  • [6] A Facile Synthesis of Nitrogen-Doped Porous Carbon Materials for High-Performance Supercapacitors
    Yao, Lu
    Chen, Da-Ming
    Yan, Song
    Lin, Jing-Jing
    Liu, Ye-Ping
    Lian, Jun
    Liu, Yue-Ran
    Lin, Hua-Lin
    Han, Sheng
    CHEMISTRYSELECT, 2019, 4 (09): : 2726 - 2733
  • [7] Dictyophora-derived N-doped porous carbon microspheres for high-performance supercapacitors
    Zuo, Saisai
    Gao, Jingping
    Wu, Fuming
    Yang, Bingye
    Sun, Yu
    Xie, Minhui
    Mi, Xue
    Wang, Wei
    Liu, Yu
    Yan, Jing
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (36) : 15415 - 15425
  • [8] Hierarchically Porous N-Doped Carbon Nanosheets Derived From Grapefruit Peels for High-Performance Supercapacitors
    Wang, Ying-Ying
    Hou, Bao-Hua
    Lu, Hong-Yan
    Lu, Chang-Li
    Wu, Xing-Long
    CHEMISTRYSELECT, 2016, 1 (07): : 1441 - 1446
  • [9] N-doped porous carbon nanotubes derived from polypyrrole for supercapacitors with high performance
    Zong, Shuang
    Zhang, Yue
    Xaba, Morena S.
    Liu, Xinying
    Chen, Aibing
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2020, 152
  • [10] N-doped mesoporous carbon derived from electrodeposited polypyrrole on porous carbon cloth for high-performance flexibility supercapacitors
    Zhang, Qian
    Sun, Baolong
    Sun, Jiang
    Wang, Ni
    Hu, Wencheng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 839 : 39 - 47