Facile Synthesis of N-Doped Porous Carbon Materials Derived from Bombyx Mori Silk for High-Performance Symmetric Supercapacitors

被引:0
|
作者
Li, Lingyan [1 ]
Wen, Jingjing [1 ]
Liang, Jiajing [1 ]
Cheng, Xiaoyang [1 ]
Yao, Jiahui [1 ]
Gao, Yu [1 ]
Hu, Songhao [1 ]
Wu, Hao [1 ]
Zheng, Jinfeng [2 ]
Li, Guifang [3 ]
机构
[1] Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Taiyuan 030032, Peoples R China
[2] Shanxi Datong Univ, Engn Res Ctr Coal Based Ecol Carbon Sequestrat Tec, Key Lab Graphene Forestry Applicat Natl Forest & G, Minstry Educ, Datong 037009, Peoples R China
[3] Jimei Univ, Coll Marine Equipment & Mech Engn, Key Lab Energy Cleaning Utilizat Dev Cleaning Comb, Xiamen Key Lab Marine Corros & Smart Protect Mat, Xiamen 361021, Peoples R China
关键词
Bombyx mori silk; Carbon material; N-doping; Energy storage; Supercapacitor; NITROGEN; GRAPHENE; OXYGEN;
D O I
10.1002/chem.202404569
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heteroatom doping and structural modification can significantly improve the electrochemical properties of carbon materials, but it is difficult to achieve synchronous control of the two. To this end, N-doped porous carbon material (BCNK) was synthesized using bombyx mori silk as carbon source, melamine and KHCO3 as activators. When only melamine is added, the prepared carbon material (BCN) only increases the heteroatom content. When only KHCO3 is added, the prepared carbon material (BCK) only increases the specific surface area and pore volume. The microstructure and heteratom content of carbon materials can be controlled simultaneously by adding two activators at the same time. Electrochemical tests show that the electrochemical performance of BCNK is higher than that of BCN and BCK. It is worth mentioning that the specific surface area of BCNK is much lower than that of BCK, and the heteroatom content is higher than that of BCK, indicating that increasing the heteroatom content is more conducive to achieving excellent electrochemical performance than increasing the specific surface area. This study not only provides a new way for the application of silk in supercapacitors, but also enables researchers to re-understand the relationship between the structure and electrochemical properties of carbon materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] N-doped porous carbon network anchoring on hollow wooden carbon fibers for high-performance electrode materials in supercapacitors
    Zhang, Shuaijie
    Lu, Zhichao
    Li, Yaxuan
    Qiu, Zihan
    Bai, Yuanjuan
    Liu, Gonggang
    Xu, Laiqiang
    Liao, Yuanyuan
    Chang, Shanshan
    Hu, Jinbo
    BIOMASS CONVERSION AND BIOREFINERY, 2025, 15 (01) : 271 - 283
  • [22] Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors
    Zhou, Ting
    Zhang, Wenjun
    Fu, Hao
    Fang, Jingyuan
    Chen, Chunnian
    Wang, Zhongbing
    NANOTECHNOLOGY, 2022, 33 (08)
  • [23] N-doped porous carbon nanofibers derived from N-rich cross-linked polymer for high-performance supercapacitors
    Jiang Peng
    Jing Huang
    Junqing Zeng
    Liping Zheng
    Huajie Chen
    Ionics, 2024, 30 : 979 - 990
  • [24] N-doped porous carbon nanofibers derived from N-rich cross-linked polymer for high-performance supercapacitors
    Peng, Jiang
    Huang, Jing
    Zeng, Junqing
    Zheng, Liping
    Chen, Huajie
    IONICS, 2024, 30 (02) : 979 - 990
  • [25] N-doped layered porous carbon electrodes with high mass loadings for high-performance supercapacitors
    Sheng, Li-zhi
    Zhao, Yun-yun
    Hou, Bao-quan
    Xiao, Zhen-peng
    Jiang, Li-li
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2021, 36 (01) : 167 - 175
  • [26] Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors
    Wang, Qun
    Qin, Bin
    Zhang, Xiaohua
    Xie, Xiaoling
    Jin, Li'e
    Cao, Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) : 19653 - 19663
  • [27] Ulothrix-Derived Sulfur-Doped Porous Carbon for High-Performance Symmetric Supercapacitors
    Liu, Song
    Chen, Kun
    Wu, Qiang
    Gao, Yuanyuan
    Xue, Changguo
    Dong, Xiang
    ACS OMEGA, 2022, 7 (12): : 10137 - 10143
  • [28] Scalable fabrication of hierarchically porous N-doped carbon electrode materials for high-performance aqueous symmetric supercapacitor
    Haoyuan Li
    Guoxin Zhang
    Rongrong Zhang
    Huaxing Luo
    Lin Wang
    Cejun Hu
    Imran Samo
    Yingchun Pang
    Zheng Chang
    Xiaoming Sun
    Journal of Materials Science, 2018, 53 : 5194 - 5203
  • [29] Scalable fabrication of hierarchically porous N-doped carbon electrode materials for high-performance aqueous symmetric supercapacitor
    Li, Haoyuan
    Zhang, Guoxin
    Zhang, Rongrong
    Luo, Huaxing
    Wang, Lin
    Hu, Cejun
    Samo, Imran
    Pang, Yingchun
    Chang, Zheng
    Sun, Xiaoming
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (07) : 5194 - 5203
  • [30] Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors
    Zhu, Tingting
    Zhou, Jin
    Li, Zhaohui
    Li, Shijiao
    Si, Weijiang
    Zhuo, Shuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) : 12545 - 12551