From skills to symbols: Learning symbolic representations for abstract high-level planning

被引:0
|
作者
Konidaris, George [1 ,2 ]
Kaelbling, Leslie Pack [3 ]
Lozano-Perez, Tomas [3 ]
机构
[1] Brown University, Providence,RI,02912, United States
[2] Duke University, Durham,NC,27708, United States
[3] MIT CSAIL, 32 Vassar Street, Cambridge,MA,02139, United States
关键词
Abstract representation - Probabilistic classification - Probabilistic density - Probabilistic planning - Probability of success - Specific distribution - Symbolic representation - Theoretical foundations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:215 / 289
相关论文
共 50 条
  • [41] A FEATURE EMBEDDING STRATEGY FOR HIGH-LEVEL CNN REPRESENTATIONS FROM MULTIPLE CONVNETS
    Akilan, T.
    Wu, Q. M. Jonathan
    Jiang, Wei
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1195 - 1199
  • [42] High-Level Visual Object Representations Are Constrained by Position
    Kravitz, Dwight J.
    Kriegeskorte, Nikolaus
    Baker, Chris I.
    CEREBRAL CORTEX, 2010, 20 (12) : 2916 - 2925
  • [43] Unified Multirate Control: From Low-Level Actuation to High-Level Planning
    Rosolia, Ugo
    Singletary, Andrew
    Ames, Aaron D.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) : 6627 - 6640
  • [44] Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions
    Daniele, Alessandro
    Campari, Tommaso
    Malhotra, Sagar
    Serafini, Luciano
    NEURAL-SYMBOLIC LEARNING AND REASONING 2023, NESY 2023, 2023,
  • [45] Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions
    Daniele, Alessandro
    Campari, Tommaso
    Malhotra, Sagar
    Serafini, Luciano
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3597 - 3605
  • [46] Constructing efficient formal models from high-level descriptions using symbolic simulation
    Koelbl, A
    Pixley, C
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2005, 33 (06) : 645 - 666
  • [47] High-level management control of the planning process
    Rooney, C
    Bangert, C
    ADHESIVES AGE, 2001, 44 (10): : 49 - 49
  • [48] Symbol Acquisition for Probabilistic High-Level Planning
    Konidaris, George
    Kaelbling, Leslie Pack
    Lozano-Perez, Tomas
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 3619 - 3627
  • [49] Equivalence Checking of High-Level Designs Based on Symbolic Simulation
    Matsumoto, Takeshi
    Nishihara, Tasuku
    Kojima, Yoshihisa
    Fujita, Masahiro
    2009 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLUMES I & II: COMMUNICATIONS, NETWORKS AND SIGNAL PROCESSING, VOL I/ELECTRONIC DEVICES, CIRUITS AND SYSTEMS, VOL II, 2009, : 1129 - +
  • [50] NeuroLISP: High-level symbolic programming with attractor neural networks
    Davis, Gregory P.
    Katz, Garrett E.
    Gentili, Rodolphe J.
    Reggia, James A.
    NEURAL NETWORKS, 2022, 146 : 200 - 219