Enhancing short-term streamflow forecasting of extreme events: A wavelet-artificial neural network hybrid approach

被引:0
|
作者
Gorodetskaya, Yulia [1 ]
Silva, Rodrigo Oliveira [1 ]
Ribeiro, Celso Bandeira de Melo [2 ]
Goliatt, Leonardo [3 ]
机构
[1] Univ Fed Juiz de Fora, Dept Computat Modeling, BR-36036900 Juiz De Fora, Brazil
[2] Univ Fed Juiz de Fora, Dept Sanit & Environm Engn, BR-36036900 Juiz De Fora, Brazil
[3] Univ Fed Juiz de Fora, Dept Computat & Appl Mech, BR-36036900 Juiz De Fora, Brazil
来源
WATER CYCLE | 2024年 / 5卷
关键词
Artificial neural networks; Wavelet transform; Time series; Streamflow forecasting; Paraiba do Sul river; Extreme flows; INTELLIGENCE MODELS; INCORRECT USAGE; TIME-SERIES; TRANSFORM; PERFORMANCE; ALGORITHMS; MULTISTEP; HYDROLOGY; VARIABLES; IMPACT;
D O I
10.1016/j.watcyc.2024.09.001
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Accurate short-term streamflow forecasting models are crucial for effective water resource management, enabling timely responses to extreme flood or drought events and mitigating potential socioeconomic damage. This study proposes robust hybrid Wavelet Artificial Neural Network (WANN) models for real-world hydrological applications. Two WANN variants, WANN(one) and WANN(multi), are proposed for short-term streamflow forecasting of extreme (high and low) flows at eight gauging stations within Brazil's Paraiba do Sul River basin. WANN(one) directly feeds both the original streamflow data and the decomposed components obtained through an A Trous wavelet transform into the ANN architecture. Conversely, WANN(multi) utilizes separate ANNs for the original data, with the final streamflow estimate reconstructed via the inverse wavelet transform of the individual ANN outputs. The performance of these WANN models is then compared against conventional ANN models. In both approaches, Bayesian optimization is employed to fine-tune the hyperparameters within the ANN architecture. The WANN models achieved superior performance for 7-day streamflow forecasts compared to conventional ANN models. WANN models yielded high R2 values (>0.9) and low MAPE (4.8%-14.7%) within the expected RMSE range, demonstrating statistically significant improvements over ANN models (71% and 75% reduction in RMSE and MAPE, respectively, and 69% increase in R2). Further analysis revealed that WANN(multi) models generally exhibited superior performance for low extreme flow predictions, while WANN(one) models achieved the highest accuracy for high extreme flows at most stations. WANN models' strong performance suggests their value for real-time flood warnings, enabling improved decision-making in areas like flood/drought mitigation and urban water planning.
引用
收藏
页码:297 / 312
页数:16
相关论文
共 50 条
  • [41] A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting
    Lv, Shengxiang
    Wang, Lin
    Wang, Sirui
    ENERGIES, 2023, 16 (04)
  • [42] Hybrid partial least squares and neural network approach for short-term electrical load forecasting
    Yang S.
    Lu M.
    Xue H.
    J. Control Theory Appl., 2008, 1 (93-96): : 93 - 96
  • [44] A Hybrid Wavelet Transform Based Short-Term Wind Speed Forecasting Approach
    Wang, Jujie
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [45] Short-term load forecasting using hybrid neural network and wavelet transform (ID: 6-133)
    Yin Chengqun
    Kang Lifeng
    Sun Wei
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-5: INDUSTRIAL ENGINEERING AND MANAGEMENT INNOVATION IN NEW-ERA, 2006, : 2819 - 2824
  • [46] A hybrid model for forecasting aquatic products short-term price integrated wavelet neural network with genetic algorithm
    Hu, T
    Zhang, XS
    Hou, YX
    Mu, WS
    Fu, ZT
    ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 352 - 360
  • [47] Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting
    Sedki, A.
    Ouazar, D.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (07) : 132 - 138
  • [48] A Neural Network Approach for short-term forecasting of PV Generation in Dwellings
    Georgiou, Giorgos S.
    Christodoulides, Paul
    Kalogirou, Soteris A.
    2018 53RD INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2018,
  • [49] An application of short-term load-forecasting based on artificial neural network
    Wu, JJ
    Ni, QD
    Meng, SL
    Liu, HM
    98 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, PROCEEDINGS, 1998, : 102 - 105
  • [50] Short-term load forecasting based on mutual information and artificial neural network
    Wang, Zhiyong
    Cao, Yijia
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 1246 - 1251