Enhancing short-term streamflow forecasting of extreme events: A wavelet-artificial neural network hybrid approach

被引:0
|
作者
Gorodetskaya, Yulia [1 ]
Silva, Rodrigo Oliveira [1 ]
Ribeiro, Celso Bandeira de Melo [2 ]
Goliatt, Leonardo [3 ]
机构
[1] Univ Fed Juiz de Fora, Dept Computat Modeling, BR-36036900 Juiz De Fora, Brazil
[2] Univ Fed Juiz de Fora, Dept Sanit & Environm Engn, BR-36036900 Juiz De Fora, Brazil
[3] Univ Fed Juiz de Fora, Dept Computat & Appl Mech, BR-36036900 Juiz De Fora, Brazil
来源
WATER CYCLE | 2024年 / 5卷
关键词
Artificial neural networks; Wavelet transform; Time series; Streamflow forecasting; Paraiba do Sul river; Extreme flows; INTELLIGENCE MODELS; INCORRECT USAGE; TIME-SERIES; TRANSFORM; PERFORMANCE; ALGORITHMS; MULTISTEP; HYDROLOGY; VARIABLES; IMPACT;
D O I
10.1016/j.watcyc.2024.09.001
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Accurate short-term streamflow forecasting models are crucial for effective water resource management, enabling timely responses to extreme flood or drought events and mitigating potential socioeconomic damage. This study proposes robust hybrid Wavelet Artificial Neural Network (WANN) models for real-world hydrological applications. Two WANN variants, WANN(one) and WANN(multi), are proposed for short-term streamflow forecasting of extreme (high and low) flows at eight gauging stations within Brazil's Paraiba do Sul River basin. WANN(one) directly feeds both the original streamflow data and the decomposed components obtained through an A Trous wavelet transform into the ANN architecture. Conversely, WANN(multi) utilizes separate ANNs for the original data, with the final streamflow estimate reconstructed via the inverse wavelet transform of the individual ANN outputs. The performance of these WANN models is then compared against conventional ANN models. In both approaches, Bayesian optimization is employed to fine-tune the hyperparameters within the ANN architecture. The WANN models achieved superior performance for 7-day streamflow forecasts compared to conventional ANN models. WANN models yielded high R2 values (>0.9) and low MAPE (4.8%-14.7%) within the expected RMSE range, demonstrating statistically significant improvements over ANN models (71% and 75% reduction in RMSE and MAPE, respectively, and 69% increase in R2). Further analysis revealed that WANN(multi) models generally exhibited superior performance for low extreme flow predictions, while WANN(one) models achieved the highest accuracy for high extreme flows at most stations. WANN models' strong performance suggests their value for real-time flood warnings, enabling improved decision-making in areas like flood/drought mitigation and urban water planning.
引用
收藏
页码:297 / 312
页数:16
相关论文
共 50 条
  • [31] Short-term streamflow forecasting: ARIMA vs neural networks
    Frausto-Solis, Juan
    Pita, Esmeralda
    Lagunas, Javier
    RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 402 - +
  • [32] A comparative study of models for short-term streamflow forecasting with emphasis on wavelet-based approach
    Yuqing Sun
    Jun Niu
    Bellie Sivakumar
    Stochastic Environmental Research and Risk Assessment, 2019, 33 : 1875 - 1891
  • [33] A comparative study of models for short-term streamflow forecasting with emphasis on wavelet-based approach
    Sun, Yuqing
    Niu, Jun
    Sivakumar, Bellie
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (10) : 1875 - 1891
  • [34] Short-term Traffic Flow Forecasting Based on Wavelet Transform and Neural Network
    Ouyang, Liwei
    Zhu, Fenghua
    Xiong, Gang
    Zhao, Hongxia
    Wang, Feiyue
    Liu, Taozhong
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [35] Short-term Wind Power Forecasting by Genetic Algorithm Of Wavelet Neural Network
    Wang, Yicong
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1751 - +
  • [36] Research on the short-term agricultural electric load forecasting of wavelet neural network
    Zhang, Qian
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE, VOL 2, 2008, 259 : 737 - 745
  • [37] Research on the Short-term Electric Load Forecasting Based on Wavelet Neural Network
    Liu, Tongna
    2009 INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT, INNOVATION MANAGEMENT AND INDUSTRIAL ENGINEERING, VOL 3, PROCEEDINGS, 2009, : 20 - 23
  • [38] Short-term Traffic Flow Forecasting Model Based on Wavelet Neural Network
    Gao, Junwei
    Leng, Ziwen
    Qin, Yong
    Ma, Zengtao
    Liu, Xin
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 5081 - 5084
  • [39] Short-term wind power forecasting by genetic algorithm of wavelet neural network
    20144900293289
    (1) Electric Power Engineering Institute, North China Electric Power University, Baoding, China, Future University Hakodate; IEEE Sapporo Section; Xiamen University (Institute of Electrical and Electronics Engineers Inc., United States):
  • [40] Short-term Load Forecasting Based on Rough Set and Wavelet Neural Network
    Meng, Ming
    Sun, Wei
    2008 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY, VOLS 1 AND 2, PROCEEDINGS, 2008, : 1007 - 1011