Almost optimal explicit Johnson-Lindenstrauss families

被引:0
|
作者
Harvard University, Cambridge, MA, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
关键词
Engineering Village;
D O I
暂无
中图分类号
学科分类号
摘要
Communication complexity - Design and analysis of algorithms - Dimensional vectors - Embedding dimensions - Explicit constructions - Johnson Lindenstrauss - Johnson-Lindenstrauss lemmata - Minimizing the number of
引用
收藏
相关论文
共 50 条
  • [41] Database-friendly random projections: Johnson-Lindenstrauss with binary coins
    Achlioptas, D
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) : 671 - 687
  • [42] Modewise Johnson-Lindenstrauss embeddings for nuclear many-body theory
    Zare, A.
    Wirth, R.
    Haselby, C. A.
    Hergert, H.
    Iwen, M.
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05):
  • [43] Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces
    Dmitriyuk, Alon
    Gordon, Yehoram
    STUDIA MATHEMATICA, 2009, 195 (03) : 227 - 241
  • [44] Guarantees for the Kronecker fast Johnson-Lindenstrauss transform using a coherence and sampling argument
    Malik, Osman Asif
    Becker, Stephen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 120 - 137
  • [45] On outer bi-Lipschitz extensions of linear Johnson-Lindenstrauss embeddings of subsets of RN
    Chiclana, Rafael
    Iwen, Mark A.
    Roach, Mark Philip
    NUMERISCHE MATHEMATIK, 2024, 156 (06) : 2111 - 2130
  • [46] TOWARDS AUTOMATED IMAGE HASHING BASED ON THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM (FJLT)
    Fatourechi, Mehrdad
    Lv, Xudong
    Wang, Z. Jane
    Ward, Rabab K.
    2009 FIRST IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2009, : 121 - 125
  • [47] Oblivious Dimension Reduction for k-Means: Beyond Subspaces and the Johnson-Lindenstrauss Lemma
    Becchetti, Luca
    Bury, Marc
    Cohen-Addad, Vincent
    Grandoni, Fabrizio
    Schwiegelshohn, Chris
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 1039 - 1050
  • [48] Dimensionality reduction via the Johnson-Lindenstrauss Lemma: theoretical and empirical bounds on embedding dimension
    Fedoruk, John
    Schmuland, Byron
    Johnson, Julia
    Heo, Giseon
    JOURNAL OF SUPERCOMPUTING, 2018, 74 (08): : 3933 - 3949
  • [49] PERFORMANCE OF JOHNSON-LINDENSTRAUSS TRANSFORM FOR k-MEANS AND k-MEDIANS CLUSTERING
    Makarychev, Konstantin
    Makarychev, Yury
    Razenshteyn, Ilya
    SIAM JOURNAL ON COMPUTING, 2023, 52 (02)
  • [50] Performance of Johnson-Lindenstrauss Transform for k-Means and k-Medians Clustering
    Makarychev, Konstantin
    Makarychev, Yury
    Razenshteyn, Ilya
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 1027 - 1038